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PREFACE

Since 1885, when the first edition of this work was published,

many advances have been made in the subject of Mechanics of

Materials. Some of these have, been noted in the additions

to subsequent editions, but to record and correlate them properly

it has now become necessary to rewrite and reset the book. In

doing so the author has endeavored to keep the facts of experi-

ment and practice constantly in view, for the theory of the subject

is merely the formal expression and generahzation of observed

phenomena. The subject, indeed, no longer consists of a series

of academic exercises in algebra and rational mechanics, but

it is indispensably necessary that the phenomena of stress should

be clearly understood by the student. While laboratory work

is a valuable aid to this end, it is important, in the opinion of

the author, that no recitation or lecture should be held without

having test specimens at hand with which to illustrate the phys-

ical phenomena.

The same general plan of treatment has been followed as;,

before, but the subdivisions are somewhat different, and the fifteen,

chapters of the last edition have been increased to nineteen..

The statement of average values of the principal materials of

engineering has proved so advantageous to students that it is

here also followed. Numerous niunerical examples are given

in the text to exemphfy the formulas and methods, these generally

relating to cases that arise in practice. To encourage students

to think for themselves, one or more problems are given at the

end of each article; for the experience of the author has indicated

that the solution of many numerical exercises is required in

order that students may become well grounded in theory.

Most of the topics of. the last edition have been treated in a

fuller manner- than before. The subjects of impact on bars

and beams, resilience and work, and apparent and true stresses
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have been much changed with the intention of rendering the

presentation more clear and accurate. Among many new topics

introduced are those of economic sections, for beams, moving

loads on beams, constrained beams with supports on different

levels, the torsion of rectangular bars, compound columns and

beams, reinforced-concrete beams, plates under concentrated

loads, internal friction, rules for testing materials, and elastic-

electric analogies. A few changes in algebraic notation have

been made in order that similar quantities may always be desig-

nated by letters of the same type; Greek letters are used only

for angles and abstract numbers.

Compared with the ninth edition, the number of articles has

been increased from 151 to 188, the number of tables from 8

to 20, the number of cuts from 85 to 250, and the number of

problems from .222 to 305. Although the length of each page

has been increased eight percent and smaller type has been used

for formulas and problems, the number of pages has been in-

creased from 378 to 518. While the main purpose in rewriting

and enlarging the book has been to keep it abreast with modem
progress, the attempt, has also been made to present the subject

more clearly and logically than before, in order both to advance

the interests of sound engineering education and to promote sound

engineering practice.

NOTE

This impression differs from the preceding one mainly in the

discussion of reinforced concrete beams and of circular plates.

Arts. 114, 115, 116, 160 having been rewritten. Minor changes

have been made in other articles and all known typographic

errors have been removed.

Mansfield Merriman.
Lehigh University, South Bethlehem, Pa.,

December, 1906.
~
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Mechanics of Materials

Chapter I

ELASTIC AND ULTIMATE STRENGTH

Article 1. Simple Axial Stresses

Mechanics of Materials is the science that treats of the effects

of forces in causing changes in the size and shape of bodies. Such

forces are generally applied to bodies slowly, and the changes in

size and shape occur while the forces are increasing up to their

final values. A ' Stress ' is an internal force that resists the change

in shape or size, and when the applied forces have reached their

final values the internal stresses hold them in equilibrium. The

simplest case is that of a rope, at each end of which a man pulls

with a force, say 25 pounds, then in every section of the rope

there exists a stress of 25 pounds. Stresses are measured in the

same unit as that used for the appUed forces, and generally in

poimds or kilograms.

A 'Bar' is a prismatic body having the same size (throughout

its length. If a plane is passed nomial to the bar, its intersection

with the .prism is called the 'cross-section' or the 'section' of the

bar, and the area of this cross-section is called the ' section area.

'

In any section imagined to be cut out, there exists a stress equal

to the longitudinal force acting on the end of the bar. A 'Unit-

Stress' is the stress on a unit of the section area, and this is usually

expressed iti pounds per square inch or in kilograms per square

centimeter. For example, let a bar, 3 inches wide and i^ inches

thick, be subjected to a pull of 14 400 pounds; the resisting stress

is 14 400 pounds, and the imit-stress is 14 400 pounds divided by

4J square inches, or 3 200 poimds per square inch.
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When external forces act upon the ends of a bar in a direction

away from its ends they are called 'Tensile Forces'; when they

act towards the ends, they are called 'Compressive Forces.' A :

pull is a tensile force and a push is a compressive force, and

these two cases are frequently called 'Tension' and 'Compres-
,

sion'. The resisting stresses receive similar designations; a ten-

sile stress is that which resists tensile' forces; a compressive stress

is that which resists compressive forces.

—
»

tf 5
I—> -e—

I

->i

|i

Fig. la Fig. 16

The case of tension is shown in Fig. la, where two tensile

forces, each equal to P, act upon the ends of a bar having the

section area a. Let mn be any imaginary plane normal to the

bar, and let the two parts of the bar be imagined to be separated

as in Fig. lb. Then the equilibriiun of each part will be main-

tained if tensile forces equivalent to the resisting stresses are

applied as shown. These resisting stresses act normally to the

section area a, and they are in each case opposite in direction to

the force P. Each part of the bar is held in equilibrium by the

applied force P and the resisting tensile stress; accordingly the

resisting tensile stress must equal the tensile force P.

ml I'm

Fig. U Fig. Id

The case of compression is shown in Fig. Ic, where the forces

P act toward the ends of the bar. For any imaginary plane mn,

the bar may be regarded as separated into two bars as in Fig.

Id, each of which is held in equilibrium by compressive stresses

acting normally to the section area and in directions opposite to

p. The total resisting compressive stress must be equal to P
in order that equiHbriiun may prevail.
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Let 5 be the unit-stress of tension or compression, as th,e case

may be, which acts in any normal section of a bar having the

area a. The total stress on the section is then Sa, and this is

imiformly distributed over the area a when the force P acts

along the axis of the bar; then,

Sa=P S=P/a a=P/S (1)

from which one of the quantities may be computed when the

other is given. For example, let it be required to find what the

section area of a stick of timber should be when it is subject to

a pull of i6 500 pounds, it being required that the tensile unit-

stress shall be 900 pounds per square inch; here a= 16 500/900 =

18.3 square inches.

The terms 'Axial Forces' and 'Axial Stresses' are used to

include both tension and compression acting upon a bar, it being

understood that the resultant of the applied forces acts along the

axis of the bar. The axial force P is often called a 'Load'. It

is always understood, unless otherwise stated, that the stresses

due to an axial load are uniformly distributed over the section

area, and this is called the case of ' Simple Axial Stress ', it being

one of the most common cases in engineering. Cases where the

stress is not uniformly distributed over the section area occur

when the resultant of the applied forces does not act along the

axis of the bar, and also in beams and long columns.

The first effect of an axial load is to change the length of the

bar upon which it acts. This 'Deformation' continues until the

resisting stresses have attained such magnitudes that they equili-

brate the appUed "forces. The deformation of a bar which occurs

in tension is called 'Elongation', and that which occurs in com-

pression is called 'Shortening'. As the applied forces increase,

the resisting stresses also increase, until finally the resistance is

unable to balance the force, the deformation rapidly increases,

and the bar breaks or ruptures. The above equations apply

also to the. case of rupture. For example, it is known "that a

cast-iron bar will rupture under tension when the unit-stress S

becomes about 20000 pounds per square inch; if the bar is

iJXiJ inches in cross-section, its section area is i| square
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inches, and the tensile force required to cause rupture is

P= i|X 20 000= 37 500 pounds.

Problem la. If a cast-iron bar, 1JX2 inches in section, breaks

under a tensile load of 60 000 pounds, what load wUl break a cast-

iron rod of 2^ inches diameter ?

Prob. 16. A cast-iron bar which is to be subjected to a tension of

34 000 pounds is to be designed so that the unit-stress shall be 2 500

pounds per square inch. If the bar is round what should be its

diameter?

Art. 2. The Elastic Limit

When a bar is subjected to a gradually increasing tension, the

bar elongates, and up to a certain limit it is found that the elon-

gation is proportional to the load. Thus, when a bar of wrought

iron one square inch in section area and 100 inches long is sub-

jected to a load of 5 000 pounds, it is found to elongate closely

0.02 inches; when 10 000 pounds is applied, the total elongation

is 0.04 inches; when 15 000 pounds is applied, the elongation is

0.06 inches; when 20000 pounds is applied, the elongation is

0.08 inches; when 25000 pounds is applied, the elongation is

o.io inches. Thus far, each addition of 5 000 pounds has pro-

duced an additional elongation of 0.02 inches. But when the

next 5 000 pounds is added, making a total load of 30 000 poimds,

it is found that the total elongation is about half an inch, and

hence the elongations are increasing in a faster ratio than the

applied loads and the resisting stresses.

The 'Elastic Limit' is defined to be that unit-stress at which

'

the deformation begins to increase in a faster ratio than the

applied loads. In the above example this limit is about 25 000

pounds per square inch, and this is the average value of the elastic

limit for wrought iron. The term 'Elastic Strength' is perhaps

a better term than elastic limit, but the latter is in general use.

When the unit-stress in a bar is not greater than the elastic

limit, the bar returns, on the removal of the load, to its original

length. Thus, the above wrought-iron bar was 100.10 inches long

under the load of 25 000 pounds, and on the removal of that load
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it returns to its original length of loo.oo inches. When the unit-

stress is greater than the elastic limit, the bar does not fully re-

turn to its original length, but there remains a so-called ' Perma-
nent Set'. For instance let the length of the above bar under a

stress of 34 000 pounds be 102 inches, and on the removal of the

tension let its length be ioi| inches; then the permanent set of

the bar is i| inches.

In all cases of simple axial tension the resisting stress is equal

to the load, and the stresses hence increase proportionately to the

loads. When the elastic Hmit is not exceeded, the elongations

are found to be proportional to the loads, but when this limit is

exceeded they increase faster than the loads, and a permanent set

remains. Therefore the elastic properties of a bar are injured

when it is stressed beyond the elastic limit. Accordingly it is a

fundamental rule in designing engineering constructions that the

unit-stresses should not exceed the elastic hmit of the material.

The above facts regarding the behavior of materials in ten-

sion have been ascertained by many tests of bars and are to be

regarded as fundamental laws; all experience and all experi-

ments have verified these laws as being approximately true for

the common materials used in engineering. By such tests also it

has been shown that such laws apply to compression as well as

to tension. The following are approximate average values of the

elastic lifnits in tension for five materials extensively used in engi-

neering construction:

Material Elastic Limit

Timber 3 000 pounds per square inch

Cast Iron 6 000 pounds per square inch

Wrought Iron 25 000 pounds per square inch

Structural Steel 35 000 pounds per square inch

Strong Steel 50 000 pounds per square inch

These values should be carefully memorized by the student, and

be used in the solution of the problems in the following pages.

Table 2, at the end of this volume, gives these constants in the

metric system of measures.

The above average values are subject to considerable varia-
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tion for different qualities of the same material; for example,

some grades of structural steel may have an elastic limit ten per-

cent lower than 35 000 pounds per square inch, while others may-

run ten percent higher. In testing a number of bars of the same

kind, indeed, it is not uncommon to find a variation of five or

ten percent in the different results.

> The elastic limit in compression is the same as that in tension

for all the above materials except cast iron, which has about three

times the value above given. Brittle materials, like brick, stone,

and cast iron, usually have higher elastic limits in compression

than in tension, but it will be seen later that the elastic limits for

such materials are poorly defined, that is it is diflScult to determine

them with exactness.

By the help of the above experimental values and the princi-

ples of Art. 1, many simple problems in investigation and design

may be solved. For example, let it be required to find the size

of a square stick of timber to carry a compressive load of 64 000

pounds, so that the unit-stress may be one-third of the elastic

limit ; here the elastic limit is 3 000 pounds per square inch, and

the section area required is 64 000/ 1 000, or 64 square inches, so

that a stick 8x8 inches in size is needed.

Prob. 2a. Find the diameter of a round rod of wrought iron, which

is to be under a tension of 84 000 pounds, so that the unit-stress may^

be one-third of the elastic limit.

Prob. 2b. A stick of timber 3 inches thick is under a tension of

12 000 pounds. Compute its width, so that the unit-stress may be 40

percent of the elastic limit.

Art. 3. Ultimate Strength

When the section area of a bar is under an axial unit-stress

exceeding the elastic limit of its material, the bar is usually in

an unsafe condition. As the external forces increase, the defor-

mation increases in a more rapid ratio, until finally the rupture

of the bar occurs. The term 'ultimate strength' is used to desig-

nate the highest unit-stress that the bar can sustain, this occur-

ring at or just before rupture.
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The ultimate strengths of materials are usually from two
to four times their elastic limits, and for some materials they

are much higher in compression than in tension. Thus, the

ultimate tensile strength of cast iron is about 20 000 pounds per

square inch, while its ultimate compressive strength is about

90000 poimds per square inch.

Average values of the ultimate strengths of materials are

given in the following articles, but these are subject to much
variation for different qualities of materials. Thus, inferior

grades of cast iron may have a tensile strength as low as 15 000

pounds per square inch, while the best grades are often higher

than 30 000 pounds per square inch. In general a variation of

ten percent from these average values is to be regarded as Kable

to occur.

The 'Factor of Safety' of a bar under stress is the nimiber

which results by dividing the ultimate strength of the material

by the actual imit-stress on the section area. For example, let

a stick of timber, 6x6 inches in section area, be under a ten-

sion of 32 400 pounds. The actual unit-stress is then 32 400/36
= 900 pounds per square inch. Since the average tensile strength.

of timber is about 10 coo pounds per square inch, the factor of

safety of the bar is 10 000/900= 11.

The factor of safety was formerly much used in designing,

and for timber under steady tension was taken as about 10; that

is, one-tenth of the ultimate strength was regarded as the highest

allowable unit-stress. By this method, timber having an ulti-

mate tensile strength of 12 000 pounds per square inch should

be subjected to a vmit-stress of only 12000/10= 1 200 pounds

per square inch, so that the section area of a stick under a ten-

sion of 19 200 pounds should be 19 200/1 200= 16 square inches.

It is now considered a better plan, in judging of the degree

of security of a body under stress, to consider the elastic limit

of the material. Thus, for a stick of timber, the elastic limit

is about 3 000 poimds per square inch, and the actual unit-stress

in tension should be less than this, say one-half or one-third,

according as the applied forces are steady or variable. The
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method of the factor of safety is, however, of much value to a

student and it will be often used in this volume. In practice

both ultimate strengths and elastic limits must be considered

in deciding upon the allowable unit-stresses to which the parts

of engineering constructions are to be subjected. The average

values of the ultimate strengths of the materials of engineering

are tabulated at the end of this volume in both English and

metric measures.

The theoretical and experimental conclusions thus far estab-

lished, regarding the behavior of a bar under tension or com-

pression, may now be formulated in the following laws:

1. The resisting axial stress in every section of a bar is

equal to the applied tensUe or compressive load.

2. Under small stresses, the deformations of the bar are

proportional to the loads, and hence also to the unit-stresses.

"When the unit-stress is less than the value called the elastic

limit, the bar springs back to its original length on the

removal of the load. ,

'

3. When the unit-stress is greater than the elastic limit,

the deformations increase in a faster ratio than the loads and

stresses, and the bar does not spring back to its original

length on the removal of the load.

4. When the load becomes sufficiently great, the resisting

stress fails to balance it, so that the deformation rapidly in-

creases and the bar ruptures.

5. The allowable unit-stresses used in engineering prac-

tice are less than the elastic limit of the material.

The first of these laws is a theoretical one and rigidly correct

for all cases, it being in fact a particular case of Newton's law

that action and reaction are equal and opposite. The second

law applies strictly only to elastic materials like wrought iron

and steel, and is only roughly applicable to brittle materials

like stone and cast iron. The third law appHes to all kinds

of materials, but for brittle ones the elastic limit is difficult

to determine.

Prob. 3a. A bar of structural steel, 2^ inches in diameter, ruptures

under a tension of 271 000 pounds. Wh,at is the ultimate tensile

strength ?
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Prob. 36. Using the value given above for the ultimate tensile

strength of cast iron, compute the tensile force which is required to

rupture a cast-iron bar which is 2^X3^ inches in section area.

Art. 4. Tension

A tensile test of a vertical bar may be made by fastening

its upper end firmly with clamps and then applying loads to

its lower end. The elongations of the bar are found to increase

proportionately to the loads, and hence also to the intemial ten-

sile stresses, until the elastic limit of the material is reached

(Art., 2). After the unit-stress has exceeded the elastic limit,

the elongations increase more rapidly than the loads, and this

is often accompanied by a reduction in area of the cross-section

of the bar. Finally, the ultimate tensile strength of the mate-

rial is reached and the bar breaks.

80 000

S 10000

0.03 0.10 0.130.04 0.06 0.08

Elongations per unit of length

Fig. 4

A graphical illustration of these phenomena may be made

by laying off the unit-stresses as ordinates and the elongations

per unit of length as the abscissas. At various intervals, as the

test progresses, the applied loads are measured and also the

corresponding elongations. The load divided by the section

area of the bar gives the unit-stress, while the total elongation

divided by the length of the bar gives the unit-elongation. Oa
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the diagram a point is put at the intersection of each unit-stress

with its corresponding unit-elongation, and a curve is drawn

connecting the plotted points. Fig. 4 represents mean curves

obtained in this manner for timber/ cast iron, wrought iron, and

steel. It is seen that each curve is a straight line from the origin

until the elastic limit is reached, showing that the unit-elonga-

tions increase proportionally to the unit-stresses. At the elastic

limit a sudden change in the curve is seen, and afterwards the

elongation increases more rapidly than the stress. This dia-

gram gives mean comparative curves only, and the curve for

any individual test might deviate considerably from that shown.

The end of the curve marks the rupture of the bar. For

example, it is seen that timber ruptures in tension under a stress

of about lo coo pounds per square inch, and that the elongation

of the bar at that time is about T^fTr of the length of the bar,

that is the total elongation is about 1.5 percent of the length. The
rupture of wrought iron and structural steel is not shown upon

the diagram, since the ultimate elongation of these materials is

about 30 percent, while the diagram extends only up to 12 per-

cent. The following are approximate average values of the

ultimate strengths and ultimate elongations for five materials

widely used in engineering work:

Material Ultimate Tensile Strength Ultimate Elongation

Timber 10 000 pounds per square inch 1.5 percent

Cast Iron 20 000 pounds per square inch 0.3 percent

Wrought Iron 50 000 pounds per square inch 30 percent

Structural Steel 60 000 pounds per square inch 30 percent

Strong Steel 100 000 pounds per square inch 15 percent

These ultimate tensile strengths should be carefully kept in

mind by the student as a basis for future knowledge, and they

will be used in the solution of the examples and problems in

this book. Table 3, at the end of this volume, gives values

for other materials.

These average values of ultimate strengths and elongations
are those derived from tests on small specimens, say one inch
in diameter and 8 inches in gaged length. Large bars such as
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are used in engineering constructions have ultimate strengths

slightly less and ultimate elongations considerably less than these

values. One of the reasons for using factors of safety (Art. 3)
is to provide security against the smaller ultimate strength of

the large pieces which must necessarily be used. The ultimate

elongation is an index of the toughness and ductility of the mate-
rial, but it is not used in the computations of designing. The
unit-elongation which occurs when a bar is stressed up to the

elastic limit is very small, compared with that which obtains at

rupture, as the curves in Fig. 4 plainly show. Fig. 169a shows
two steel specimens that were ruptured by tension.

Steel is a material which has variable physical properties

depending upon its chemical composition and the method of

its manufacture. 'Structural steel' is that which is used in

buildings, bridges, and ships, and it resembles wrought iron in

general behavior, but its tensile strength is about twenty percent

higher. 'Strong steel' is not a trade term and is here introduced

for instruction purposes only. The grades of steel are very

numerous, and they range in tensile strength from 50000 to

250000 pounds per square inch. The terms 'soft' and 'hard'

are often used to designate steel with low and high tensile strengths.

Prob. 4a. A steel specimen, 0.505 inches in diameter, reached the

elastic limit under a tensile load of 6 800 pounds and ruptured under

a load of 14 800 pounds. Compute the elastic limit and the ultimate

strengths of the steel.

Prob. 46. This specimen had a length of 2.00 inches between two

marks made on it before the test. At the elastic limit the distance be-

tween these two marks was 2.003 inches and after rupture it was 2.45

inches. Compute the unit-elongation for the elastic limit and for

rupture.

Art. 5. Compression

The phenomena of compression are the reverse of those of

tension in regard to the direction of the applied forces and resist-

ing stresses. When loads are applied to compress a bar, the

amount of shortening is proportional to the load, provided the

unit-stress on the material does not exceed the elastic limit. After
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the elastic limit is passed, the shortening increases more rapidly

than the load and hence more rapidly than the unit-stress, and

finally the rupture of the bar takes place. The area of the cross-

section decreases under tension and increases under compression.

The simplest way of testing a bar by compression is to place

it on a firm foundation and put the load upon its upper face

as shown in Fig. 5a. The bar is held in equilibrium by the

load P and the equal upward reaction of the support and there

may be represented by arrows as in Fig. 5b. On any horizontal

section of the bar, there are acting compressive stresses the sum

of which equals P (Art. 1). If the section area is a the average

compressive unit-stress is P/a, and this will be uniformly dis-

tributed over the section when the forces P coincide in direc-

tion with the axis of the prism.

mM/vm///F

i!

Fig. 5a Fig. 56 Fig. ho

When the length of the bar does not exceed about ten times

its least lateral dimension, rupture sometimes occurs by an oblique

splitting or shearing as shown in Fig. 5c. When the length is

large compared with the thickness, failure occurs under a side-

wise bending, as seen in Fig. hi. The short specimens are cases

of simple compression, and the values given in the following

table refer only to these; the long specimens are called 'columns'

and in them other stresses are developed than that of simple

compression (Art. 77). In general, the term 'compressive

strength' refers to that obtained from a bar the length of which

is considerably less than ten times its thickness. Fig. 169&

shows the rupture of a cement cube and a timber block.

Graphical illustrations of the behavior of materials under

compressive stress may be made in the same manner as for ten-

sion, the unit-shortenings being laid off as abscissas. In most

cases the ultimate shortening is much less than the ultimate
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elongation. For steel the elastic limit is about the same in com-
pression as in tension, but the compressive strength of hard
steel is much higher than the tensile strength. The following
are average values of the ultimate compressive strengths of

the principal materials used in engineering construction:

Material Ultimate Compressive Strength

Brick 3 ooo pounds per square inch

Stone 6 ooo pounds per square inch

Timber 8 ooo pounds per square inch

Cast Iron 90 000 pounds per square inch

Wrought Iron 50 000 pounds per square inch

Structural Steel 60,000 pounds per square inch

Strong Steel 120 000 pounds per square inch

These ultimate strengths are subject to much variation for

different qualities of materials, but it is necessary for the student

to fix them in his mind as a basis for future knowledge. It is

seen that timber is not quite as strong in ultimate compression

as in tension, that cast iron is 4^ times as strong, that wrought

iron and structural steel have the same strength in the two cases,

and that the typical material called strong steel has a higher

strength in compression than in tension. There are several

varieties of hard steel which have ultimate compressive strengths

much greater than that above given (Art. 25).

The investigation
.
of a body under compression is made in

the same manner as for one under tension. For example, if

a stone block, 8X12 inches in cross-section, is subject to a com-

pression of 230 coo pounds the unit-stress is 230 000/96 = 2 400

pounds per square inch, and the factor of safety is 6 000/2 400 =

2^; this is not sufficiently high for stone, as will be seen in Art. 7.

Prob. 5a. A solid cast-iron cylinder of 3 inches diameter is under a

compression of 500 000 pounds. Compute its factor of safety.

Prob. 56. A brick 2X4X8 inches weighs about 4^ pounds. What
must be the height of a pile of bricks so that the compressive unit-

stress on the lowest brick shall be one-half of its ultimate strength ?

Prob. 5c. A bar of wrought iron one square inch in section area

and one yard long weighs 10 pounds. Find the length of a vertical

bar so that the stress at the upper end shall equal the elastic limit.
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Art. 6. Shear

When two equal and opposite forces act at right angles to

,a bar and are very near together, they are called ' Shearing Forces
',

and they tend to cut or shear the bar. The action of the forces

is similar to those in a pair of shears, from which analogy the

name is derived, and the resisting stresses are called 'shearing

stresses '. Tension and compression cause stresses which act

normally to a section area, but shear causes stresses which act

parallel with and along the section area. Unless otherwise stated

it is to be considered that the shearing stresses generated by shear-

ing forces are uniformly distributed over the section area.

.^ Q^ X. . ^ 1
'^

PI IP!/
Fig. 6a Fig. 66

Fig. 6a shows the case of two plates fastened together with

a rivet and subject to a tension P. Let the section area of the

rivet be a; then the shearing unit-stress on that cross-section

lying in the plane where the plates overlap is P/a, and if this

equals the ultimate shearing strength of the material, the rivet

vdll rupture by shearing. Fig. 6b shows the case of a beam

resting upon two supports and carrying two equal loads P near

the supports, the reaction of each support being P; here a

resisting shearing stress equal to P acts on each side of the

section mn, the stress on the left of mn acting downward and

that on the right acting upward; in this case also the shear-

ing unit-stress is P/a, and the bar will shear off when this is

equal to the ultimate shearing strength of the material.

The following are average values of the ultimate shearing

strengths of materials as determined by experiment:

Material Ultimate Shearing Strength

Brick I ooo pounds per square inch

Stone I 5c» pounds per square inch

Timber, along grain 500 pounds per square inch

Timber, across grain 3 000 pounds per square inch

Cast Iron 18 000 pounds per square inch
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Material Ultimate Shearing Strength

Wrought Iron 40 000 pounds per square inch

Structural Steel 50 000 pounds per square inch

Strong Steel 80 000 pounds per square inch

By comparing these with the values for tension in Art. 4,

it is seen that the shearing strength of timber is about one-third

of the tensile strength when the shearing occurs across the grain,

and very much snfaller when it occurs parallel with the grain.

For cast iron the shearing strength is about 90 percent, and for

wrought iron and steel it is about 80 percent of the tensile strength.

There is an elastic limit in shear as well as in tension and

compression, and its value is about one-half of the ultimate

shearing strength. When the shearing unit-stress does not

exceed the elastic limit, the amount of slipping or detrusion is

proportional to the applied force; when it is greater, the defor-

mation increases more rapidly than the force.

,6

Fig. 6c Fig. 6d

Wooden specimens for tensile tests, like that shown in Fig. 6c,

will fail by shearing off the ends if their length is not sufficiently

great. For example, let ab be 6 inches and the diameter of the

central part be i^ inches. The ends are gripped tightly in the

testing machine and the cross-section of the central part thus

brought under tensile stress. The load required to cause rup-

ture by tension is,

j>=ffl5=o.7854X 1.5^X10000= 17 700 pounds

But the ends may also shear off on the surface of a cylinder hav-

ing the length ab and a diameter of i^ inches; the load required

to cause this rupture by shearing along the grain is,

p=o5=3.i42X 1.5X6X500=14 100 pounds

and hence the specimen will fail by shearing off the ends before

the tensile strength of the timber is reached. To prevent this

shearing the length ab must be made about 8 inches.

When a bar is subject either to tension or to compression.
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a shear occurs in any oblique section. Let Fig. 6d represent

a bar of section area a subject to the tension P which produces

in every normal section the unit-stress P/a. "Let mn be a plane

making an angle d with the axis of the bar and cutting from

the bar a section having the area ai. On the left of the plane,

the normal stress P may be resolved into the components Pi
and P2, respectively parallel and normal to the plane, and the

same may be done on the right. Thus it is seen that the effect

of the tensile force on the plane mn is to produce a tension Pg

normal to it and a shear Pi along it, for the two forces Pi and

Pi act in opposite directions on opposite sides of the oblique sec-

tion. The shearing stress Pi has the value P cos^ which is dis-

tributed over the area ai and this area equals a/sind. Hence

the shearing unit-stress along the oblique section is,

Si=Pi/ai= {P/a) sin(9 cos(?=J(P/a) sin2(?

When d=o° or when 6=go°, the value of Si is zero, that is there

is no shear on a plane parallel with or normal to the axis. For

all other values of d, a shearing stress exists; and the maximum
value of Si occurs when ^=45°, and then 5i=JP/a. There-

fore a normal tensile unit-stress 5 on a bar produces a shearing

unit-stress J5 along every section inclined 45 degrees to the axis

of the bar. This investigation applies also to compression and

it partially explains why the rupture of compression specimens

sometimes occurs by shearing along oblique sections, as indicated

in Fig. 5c.

Prob. 6a. A wrought-iron bolt ij inches in diameter has a head ij

inches long; and a tension of 35 000 pounds is applied longitudinally

to it. Compute the tensile unit-stress, and the factor of safety against

tension. Compute the unit-stress tending to shear off the head of the

bolt, and the factor of safety against shear.

Art. 7. Working Unit-Stresses

When a bar of section area a is imder axial stress caused

by a load P, the unit-stress 5 produced is foimd by dividing P
by a. By comparing this value of S with the ultimate strengths

and elastic limits given in the preceding articles, the degree of

security of the bar may be inferred. This process is called
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investigation. The student may not at first be able to form a
good judgment with regard to the degree of security, this being

a matter which involves some experience, as well as acquaintance

with engineering precedents and practice. As his knowledge
increases, however, his ability to judge whether unit-stresses

are or are not too gr^at will constantly improve.

When a bar is to be designed to resist an axial load P applied

at each end, the unit-stress 5 is to be assumed in accordance

with the rules of practice, and then the section area a is to be

computed. Such assumed unit-stresses are often called 'Work-

ing Unit-Stresses ', meaning that these are the unit-stresses under

which the material is to act or work. In selecting them, two
fundamental rules are to be kept in mind

:

1. Working unit-stresses should be considerably less than

the elastic limit of the material.

2. Working unit-stresses should be smaller for sudden

loads than for steady loads.

The reason for the first requirement is given in Art. 2. The
reason for the second requirement is that experience teaches'

that suddenly applied loads and shocks are more injurious and

produce larger deformations than steady loads. Thus, a bridge

subject to the traffic of heavy trains must be designed with lower

unit-stresses than a roof where the variable load consists only

of snow and wind. In buildings the stresses are mostly steady,

in bridges they are variably, and in machines the stresses are

often produced with shock.

It will be best for the student to begin to form his engineer-

ing judgment by fixing in mind the following average values

of the factors of safety to be used for different materials under

different circumstances

:

Material
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The working unit-stress will then be found for any special case

by dividing the ultimate strengths by these factors of safety.

For instance, a short timber strut in a bridge should have a work-

ing unit-stress of about 8000/10=800 pounds per square inch.

It is usually the case that a designer works under specifica-

tions in which the unit-stresses to be used are definitely stated.

The writer of the specifications must necessarily be an engineer

of much experience and with a thorough knowledge of the best

practice. The particular qualities of timber or steel to be used

will influence his selection of working unit-stresses, and in fact

different niembers of a bridge truss are often designed with

different unit-stresses. The two fimdamental rules above given

are, however, the guiding ones in all cases. In Table 5, at the

end of this volume, will be found the working unit-stresses which

are specified ih the building code of the City of New York. These

apply in the design of buildings, and the unit-stresses to be used

in the design of bridges are lower than those in the table, while

those to be used in the design of machines should be lower still.

The two fundamental principles of engineering design are

stability and economy, or in other words

:

1. A structure must safely withstand all the stresses which

may be caused by loads that can come upon it.

2. A structure should be designed so that it may be built

and maintained at the lowest possible cost.

The second of these fundamental principles requires that all

parts of the structure should be of equal strength, Uke the cele-

brated 'one-hoss shay' of the poet. For, if one part is stronger

than another, it has an excess of material which might have

been saved. Of course this rule is to be violated when the cost

of the labor required to save the material is greater than that of

the material itself. Thus it often happens that some parts of

a structure have higher factors of safety than others, but the

lowest factors should not be less than those which -good engineer-

ing practice requires.

The factors of safety stated above may be supposed to be

so arranged that, if different materials are united, the stability
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of all parts of the structure will be the same, so that if rupture

occurs, everything would break at once. Or, in other words,

timber with a factor of safety 8 has about the same reliability

as steel with a factor of 4 or stone with a factor of 15, provided

the stresses are due to steady loads.

As an example of design, let it be required to determine the

size of a short piston-rod made of hard steel having an ultimate

tensile strength of 75 000 pounds per square inch, the piston

being 20 inches in diameter and the steam pressure upon it being

80 pounds per square inch. This being a rod subject to rapidly

alternating stresses of tension and compression and perhaps to

shocks, the factor of safety should be taken at 15, which gives a

-working unit-stress of 75 000/15 = 5 °°° pounds per square inch.

The total tension being 0.7854X20^x80=25 100 pounds, the

area of the cross-section should be 25100/5000= 5.03 square

inches and this will be furnished by a rod 2.53 inches in diam-

eter, so that a diameter of 2^ inches will probably be sufficient

to give proper security against tension. Since the compressive

strength of hard steel is higher than the tensile strength, and

since the rod is short, this diameter also gives proper security

against compression.

Prob. 7a. A rod of structural steel is to be used under a tension of

87 000 pounds. Compute its diameter when it is to be used in a

building, and also when it is to be used in a bridge.

Prob. 7b. In Fig. 66 each of the loads is 4 700 pounds and the

wooden beam is 2X3 inches in cross-section. Compute the factor of

safety against shearing. Is this factor sufficiently high for steady

loads ?

Art. 8. Computations and Equations

The numerical computations required in the mechanics of

materials should be performed so that the precision of the results

fairly corresponds with the precision of the data. The values of

the elastic limits and ultimate strengths given in the preceding

tables are indefinite in the second significant figure and hence

computed areas should not be carried further than three sig-
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nificant figures the last of which has no precision. For instance

in the area of 5.03 square inches computed at the end of the

last article the last figure is of no importance, since the work-

ing unit-stress of 5 000 pounds per square inch is derived from,

rough data. Numerical computations, therefore, should include

only three significant figures as a general rule.

At the end of this volume are given tables of four-place loga-

rithms, squares of numbers, and areas of circles which are of

value in abridging computations. The table of squares may be

used to find square roots, and the table of circles to find diam-

eters from given areas. For example, a circle having an area

of 0.82 square inches has a diameter of 1.02 inches; a circle

having an area of 8.2 square inches has a diameter of 3.23 inches.

As this book is mainly intended for the use of students in

engineering colleges, a word of advice directed especially to

them may not be fnappropriate. It will be necessary for stu-

dents, in order to gain a clear idea of the mechanics of materials,

or of any engineering subject, to solve many numerical problems,

and in this work a neat and systematic method should be followed.

The practice of making computations on any loose scraps of

paper that may happen to be at hand should be discontinued

by every student who has followed it, and he should hereafter

solve his problems in a special book provided for that purpose,

accompanying them by explanatory remarks. Such a note-

book, written in ink, and containing the solutions of the prob-

lems given in these pages will prove of great value to every stu-

dent. Before beginning the solution of a problem, a diagram,

should be drawn whenever possible, for a diagram helps the

student to understand the problem, and a problem thoroughly

understood is half solved. Before beginning the numerical work,

it is also well to make a mental estimate of the answer and record

the same, comparing it later with the result of the solution, since

in this manner the engineering judgment of the student will be

developed.

In continental Europe the metric system is universally employed

in the mechanics of materials, the unit of force or stress being
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the kilogram, that of length being the meter or centimeter, and

that of area being the square centimeter. Computations in the

metric system are much simpler than those in the English sys-

tem, and it is to be hoped that the time is not far distant when
it will come into general use. As a slight contribution to this

end, the average constants relating to the strength of materials

are given in metric units in Tables 1-4 at the end of this volume,

and a few problems- using such units will be occasionally pro-

posed. In solving these problems the student should think in

the metric system and make no transformations of the data or

the results into the English system. The table of areas of circles

at the end of this volume is applicable to all systems of measures.

In the English system of measures, as generally used in this

volume, the unit of force is the pound, the unit of length is the

inch, and the unit of area is the square inch. Lengths of bars

and beams are sometimes stated in feet, but these should be

reduced to inches when they are to be used in fonnulas in order

that they may be consistent with the other data.

In this volume Greek letters are used only for signs of opera-

tion, for abstract numbers, and for angles. The letter d is em-

ployed as the s)anbol of differentiation and I as the s}Tiibol of

summation; the Greek names of these two letters should not be

used, but they may be called 'differential' and 'algebraic sum'.

The foUowing are the names of other Greek letters:

a Alpha, /? Beta, s Epsilon, rj Eta,

6 Theta, « Kappa, ^ Lambda, /x Mu,

V Nu,
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square inches; then the equations S=P/a and P=aS are cor-

rect with respect to dimensions, but the equation SH^/F=a is

impossible because the first member represents pounds per

square inch while the second is an area. The equation

5i =i(P/fl) sina^, deduced in Art. 6, is correct in dimensions,

for both S\ and P/a represent pounds per square inch while

sin20 is an abstract number.

Prob. 8a. A bar of wrought iron is 3.25 centimeters in diameter.

What load in kilograms will cause it to rupture by tension? What
load will stress it up to one-half of the elastic limit ?

Prob. 86. A round bar of structural steel is under a tension of 7 000

kilos. What should be its diameter in centimeters in order that the

factor of safety may be 6 ?

Prob. 8c. Let K represent work, P pounds, 5 and E pounds per

square inch, / inches, and a square inches; determine whether or

not the formula K=\(S^lE)al is dimensionally correct. Also show

whether the equation oi^-\-py^-\-(ix-^p(i=o is or is not correct.
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Chapter II

ELASTIC AND ULTIMATE DEFORMATION

Art. 9. Modulus of Elasticity

The term 'Elastic Deformation' is used to designate that

change of shape of a body which accompanies stresses that do

not surpass the elastic limit of the material. In. tension the

principal deformation is the elongation of the bar, in compres-

sion it is the shortening. The fact that these deformations are

proportional to the stresses (Art. 2) enables rules to be estab-

lished whereby the change of length of a bar can be computed,

provided the elastic limit be not exceeded.

Let P be an axial tensile load applied to a bar which has a

cross-section of area a; then the tensile 'unit-stress 5 is P/a

(Art. 1). Let I be the length of the bar and e the total elonga-

tion which occurs under the stress ; then the unit-elongation is e/l,

and this will be designated by e. Similarly let P be a compres-

sive load which produces the shortening e, the compressive unit-

stress is P/a, and the unit-shortening is e/l. Unit-stress is the

stress on a unit of area, the total stress being regarded as uni-

formly distributed over the section area of the bar. Unit-deforma-

tion is the change in length of a linear unit of the bar, the total

deformation being regarded as uniformly distributed over the total

length. Accordingly for any bar in tension or compression.

Unit-stress S=P/a Unit-deformation s=e/l

and these are applicable whether the elastic limit be exceeded

or not, as illustrated in Art. 4.

When the elastic limit is not exceeded by the unit-stress, the

imit-deformation e/l is proportional to the unit-stress P/a, and

hence the ratio of the latter tq the former is a constant for each

kind of material. The term 'Modulus of Elasticity' is used for

this constant, and it may be defined as the ratio of the unit-stress
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to the unit-deformation. The letter E is used for the modultis

of elasticity and hence, from the , definition, its value for tension

or compression is,

E=l or £=^ (9)
e e/l

Since e and I are linear quantities, e is an abstract nimiber, and

therefore E is expressed in the same unit as S, that is in pounds

per square inch or in kilograms per square centimeter.

The above equations show that E equals P when a is unity

and e is equal to /; that is, the modulus of elasticity is the force

which will elongate a bar of one square unit in cross-section to

double its original length, provided that this can be done with-

out exceeding the elastic limit of the material. There is prob-

ably no material, except india-rubber, for which so great an

elastic elongation is possible.

The modulus of elasticity E is called by some writers the

'coefficient of elasticity', but the former term is now of more

general use in the United States of America ; in books on physics

it is often called 'Young's modulus'. The student should care-

fully note that the above formulas for E apply only when the

unit-stress 5 or P/a is less than the elastic limit of the material.

When modulus of elasticity is mentioned without qualification

it is always understood to refer to tension or compression and

not to shear (Art. 15).

When gradually increasing loads are applied to a bar and

the values of e are measured for different values of P, the simul-

taneous quantities P/a and e/l are known, and their ratio gives

the value of E. The following are approximate average values

of E for the different materials used in engineering construction,

which have been derived from the records of numerous tests

:

Material Modulus of Elasticity

Brick 2 ooo ooo pounds per square inch

Stone 6 ooo ooo pounds per square inch

Timber i 500 000 pounds per square inch

Cast Iron 15 000 000 pounds per square inch

Wrought Iron 25 000 000 pounds per square inch

Steel 30 000 000 pounds per square inch
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The values here given for brick and stone apply only to com-
pression and little is known regarding the elastic properties of

these materials under tension; those given for the other mate-

rials apply to both tension and compression. It is seen that

the modulus of elasticity for timber is one-tenth of that for cast

iron, that for cast iron being one-half of that for steel. Table 2,

at the end of this book, gives these constants in metric measures.

The modulus of elasticity is a measure of the stiffness of

the material, that is, of its ability to resist change of shape under

unit-stresses not higher than the elastic limit. For, the unit-

deformation e may be expressed by S/E, and hence e is the

least for a given S when E is the greatest. The above values

of E show that the elastic change in length of a steel bar is one-

twentieth of that of a timber bar and one-half of that of a cast-

iron bar, the applied tension being the same in the three cases

and the sizes and lengths of the bars being equal.

Prob. 9a. Compute the modulus of elasticity of a bar, i| inches in

diameter and i6 feet long, which elongates 0.125 inches under a ten-

sion of 21 000 pounds.

Prob. 9&. A wooden specimen i inch in diameter and 18 inches

long, elongates 0.013 inches when the tension is increased from 800 to

I 600 pounds, and 0.24 inches when the tension is increased from

I 600 to 6 000 pounds. Compute the modulus of elasticity.

Art. 10. Elastic Change in Length

The change in length of a bar under an axial stress which

does not exceed the elastic Umit of the material is readily com-

puted when the modulus of elasticity of the material is known.

From the definition of that modulus in Art. 9, it is seen that the

unit-deformation in length is e=S/E, and that the total deforma-

tion in length is

in which e is the change in the length /, and P/a or S is the unit-

stress, while E is the modulus of elasticity. If e is to be found

in mches, then / must be in inches; S and E are in pounds per
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square inch and hence their ratio is an abstract number. When.

5 is a tensile unit-stress, e is the elongation of the bar; when

5 is a compressive imit-stress, e is the shortening of the bar.

These formulas may be used for computing the change of

length which occurs at the elastic limit, or imder any value of 5*

less than the elastic limit. Using the mean values of the elastic

limits in Art. 2 and those of E in Art. 9, the following values of

e/l are found for tension

:

For timber, e/l= 1/500 =0.0020

For cast iron, 6/^=1/2500=0.0004

For wrought iron, e//= 1/1000=0.0010

For structural steel, e/l= 1/850 =0.0012

These quantities show that, when bars of the same length

are stressed up to their elastic limits, the elongation of the cast-

iron bar is th.e least, that of wrought iron next, and that of timber

the greatest. The ultimate elongations, namely those which

obtain at rupture, follow a different order and are very much
greater than those which occur at the elastic limit.

As an example for stresses within the elastic limit, let it be

required to find the elongation of a bar of steel, 1JX12 inches

in section area and "23 feet long, when under a tension of 270 000

pounds. The unit-stress under this tension is 5=270000/18=

15 000 pounds per square inch, and as this is less than the elastic

limit the formula applies, and ^=15 000X276/30000000= 0.138

inches. This would also be the amoimt of shortening of the

bar under a compression of 270 000 poimds, provided that no

lateral bending occurred, but it will be seen later that a bar of

this size and length is unable to withstand a vmit-stress as high

as 15 000 pounds per square inch on account of the sidewise

flexure. The above formulas can in general be used only for

finding the shortening of a bar in compression when its length

is less than twenty times its thickness.

From the formula e/l= {P/a)/E, which applies to all elastic

changes of length, any one of the five quantities may be com-

puted when the other four are given. For example, the imit-

elongation of timber when it is stressed up to one-half of its
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elastic limit is found by e//= 1500/1 500000= 1/1000, so that

if a stick of timber elongates 0.48 inches, its length is

/= 0.48X1 000=480 inches =40 feet. Should it be required to

find the elongation of a bar of wrought iron, if inches in diam-

eter and 16 feet long, under a tension of 51 000 pounds, the

section area is 1.485 square inches, and the unit-stress

5= 51000/1.485=34300 pounds per square inch; as this is

greater than the elastic limit of the material, the formula has no
validity and it is impossible to compute by it the value of the

elongation.

Prob. 10a. Compute the elongations of a wrought-iron bar, i^

indies in diameter and 24 feet long, under tensions of 10 000, 20 000,

and 30 000 pounds.

Prob. 106. Compute the tensile force required to stretch a bar of

structural steel, ifXgi inches in section area and 23 feet 3J inches

Jong, so that its length may be increased to 23 feet 5|- inches.

Art. 11. Elastic Limit and Yield Point

In Art. 2 the elastic limit was defined as that unit-stress within

which' the deformation of a bar is proportional to the stress and

beyond which the deformation increases in a more rapid ratio

than the stress. The diagram in Art. 4 illustrates these experi-

mental facts for tension, the relation between unit-stress and
unit-elongation being shown by a straight line until the elastic

limit is reached and afterwards by a curve. The point where

the straight line is tangent to the curve indicates the elastic limit

of the material.

In Fig. 11a there is given, on a larger horizontal scale, a part

of the tension diagram of Fig. 4. For each material the point

of elastic limit is marked by a dash normal to the curve. For

any unit-stress S less than the elastic limit, the ratio of S to the

unit-deformation e is a constant, or S/e=E, and E is the modu-

lus of elasticity of the material. The greater the inclination of

the straight line to the horizontal, the greater is the value of E.

Smce e and S are variable rectangular coordinates, the equation
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5=£s is that of a straight line and E is the tangent of the angle

which this Une makes with the horizontal.

60 000-

50 000-

40 000-

30 000-

20 000-

10 000-
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In other words the elastic limits in tension for timber and cast

iron are not well defined. On the compression diagram it is

also seen that the elastic limits for wrought iron and structural

steel are not so sharply defined as those for tension, although

they are more determinable than for the other materials.

The 'Yield Point' is defined to be that unit-stress at which

the deformation increases without any increase in apphed load

or in internal stress. In Fig. 11a it is seen that the lines for

wrought iron and structural steel curve beyond the elastic limit

for a short distance and then become horizontal. In Fig. 116

the point where the curve becomes horizontal is marked by the

letter V, and the unit-stress corresponding to this is called the

yield point. .Only ductile materials like wrought iron and struc-

tural steel have yield points and these generally belong to ten-

sion and are usually only observed in testing machines where

the tension is slowly applied. Beyond the yield point the curve

continues horizontal for a short distance and then gradually rises.



30 Elastic and Ultimate Defobmation Chap. ll

Art. 12. Ultimate Deformations

Mean values of the ultimate unit-elongations for different

materials are given in the table of Art. 4, and the stress diagrams

in Fig. 4 show that these are large compared with that which

occurs at the elastic limit. Timber and cast-iron bars have

ultimate elongations about 8 times as great as "the elastic elonga-

tions, while steel has ultimate elongations from loo to 300 times

as great as the elastic ones. There is no method by which the

ultimate elongation of a bar can be computed, but all' knowledge

concerning it must be derived from the records of tests.

The ultimate elongation of a bar is determined by making

two marks upon it before it is subjected to tension and measuring

the distance between them before and after the test. The differ-

ence of these lengths divided by the original length gives the ulti-

mate elongation per unit of length, that is, the unit-elongation.

For example, if the distance between the two marks is 2.01 inches

and if this becomes 2.57 inches after the rupture, then the total

elongation is 2.57 — 2.01=0.56 inches, and the ultimate unit-

elongation is 0.56/2.01=0.280 or 28.0 percent.

In Fig. 169ffl are shown three steel specimens, that at the top

being one which has not been tested. Its total length is 5^ inches

and about 2^ inches of the central part is one-half an inch in

diameter. The marks are placed on this cyUnder about 2 inches

apart, the exact distance being measured to the nearest hundredth

of an inch. The two other specimens have been ruptured by

tension appHed through the screw ends' by the testing machine,

and the respective elongations were found to be 3.8 and 22.5

percent. This great difference in the ultimate elongation of steel

may be due to differences in chemical composition and method
of manufacture, but in this case it was largely due to a flaw in

the ruptured section of the middle specimen. The loads that

ruptured these two specimens were 18 600 and 22 000 pounds
respectively, so that the ultimate strengths were about 83 000

and no coo pounds per square inch.
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An elongation of a bar is always accompanied by a reduc-

tion in the area of its cross-section. The greater the ultimate

elongation the less is the area of the ruptured section. For duc-

tile materials, like wrought iron and some kinds of steel, there

is observed a very marked change, as the ultimate strength is

approached, on both sides of the section where rupture is about

to occur. In Fig. 169a this is scarcely observable in the middle

specimen, but it is plainly seen in the lower one.

The term 'Reduction of Area' refers to a ruptured specimen

and means the diminution in section area per unit of original

area. Thus for the third specimen, the original section area

was 0.1995 square inches, the area of the ruptured section was

0.1064 square inches, and hence the reduction of area is

0.0931/0.1995=0.467, or 46.7 percent. Instead of actually com-

puting the area, the squares of the diameters may be used; thus,

the original diameter was 0.504 inches, the diameter of the rup-

tured section was 0.368 inches, and the squares of these are

0.2540 and 0.1354; the reduction of area is then 0.1186/0.2540=

46.7 percent. Reduction of area, or contraction of area as it is

often called, is an index of the ductility of the material, and it

is generally regarded as a more reliable index than elongation,

because the ultimate unit-elongation is subject to variation with

the ratio of the length of the specimen to its diameter, whereas

the reduction of area is more constant. In Art. 169 further

remarks regarding ultimate elongation will be found.

Under compression, a cube or a prism decreases in length

and the area of its cross-section increases with the amount of

shortening. The ultimate shortening is, however, rarely deter-

mined, and in most cases it is much less than the ultimate elon-

gation in tension. The rupture of the compression specimen,

having a length of less than ten times its least lateral dimen-

sion, occurs usually by an oblique shearing which is illustrated

in Fig. 5c and which will be discussed later (Art. 147).

When a bar is imder tension exceeding^its elastic limit, and

this is released by the removal of the load, the length of the bar

is greater than before, as shown in the last article. It is impos-
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sible to compute this new length, but the amount of change

after the removal of the tension can be ascertained when the

modulus E is known. In Fig. 11& let the imit-stress D'd be

represented by S; then, since dD is parallel to hB, the tangent

of the angle dDD' is the modulus E, and hence on the removal

of the tension the change in unit-elongation is DD' =S/E.
Thus, if a bar of structural steel 20 feet long is stressed in

tension up to 45 ood poimds per square inch, it will shorten,

when the stress is released, the amount 240X45 000/30 000 000=

0.36 inches.

Although the area of the cross-section decreases under ten-

sion and increases under compression, the unit-stress S is always

obtained by dividing the load P by the original area a. This is

perhaps not strictly correct, but it is the custom in practice, and

all stress diagrams are constructed by using unit-stresses com-

puted in this manner.

Prob. 12. Test specimen No. 7478 of the Watertown Arsenal was

0.798 inches in diameter and 6 inches long between marks. After rup-

ture the distance between marks was 7.44 inches, and the diameter of

the ruptured section was 0.64 inches. Compute the percentages of

ultimate elongation and reduction of area.

Art. 13. Changes in Section and Volume

When the unit-stress does not exceed the elastic limit, the

changes in the area of the cross-section and in the volume

of a body under stress are very small, but it is possible to com-

pute them approximately as shown below. When the imit-stress

exceeds the elastic limit, there is no method by which changes

in section and volume can be computed.

Many measurements of the lateral dunensions of bars under

normal stress have proved that their elastic change is propor-

tional to the hnear imit-deformation. Thus, let a'bar of length

/ and diameter d have the unit-elongation e; its increase in length

is d and its decrease in diameter is l^d, where ^ is a number
which has been foimd to be about \ for cast iron and about \
for steel. For example, the value of e for wrought iron stressed
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to its elastic limit is about o.ooi (Art. 10), so that the change in

length of the bar then is o.ooi/, while the change in its diameter

is ^Xo.ooid.

Let h be any lateral dimension of length /, and let h' and F

be the lateral dimension and length under a stress which does

not exceed the elastic limit of the material ; then for tension,

V= (i+ e)l and h'= (i-h)h (13)

and similarly for the case of compression,

l'=(i-e)l and h'=(i+ Xs)h (13)'

in which the linear unit-deformation e may be computed from

e—S/E (Art. 9). The number s is very small compared with

imity, and hence its square and higher powers may be neglected

when they occur in algebraic work.
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is increased when A is less than J and this is the case for all ma-
terials used in construction. The increase in unit-volume is

(i — 2X) e, which becomes ^e for cast iron and Je for wrought iron

and steel; that is, the increase per unit of volume is one-half

or one-third of the elongation per imit of length.

In neglecting the squares and higher powers of e no error

appreciable in practice has been committed, as the student may
easily see by numerical instances. Thus, the square of (i -f-o.ooi)

is 1.002 by the approximate method, while its exact value is

1.002001. If v is a small number compared with imity, then

'(i + vy = i + 2v and (i4-v)* = i-|- Jv; also 1/(1 -f v) = i — v, and

1/(1 — v)=i + v. Again, if v and /i be small compared with

unity, then (i + v){i + fi) =i + v+ ;i and (i-Fv)(i — /i) =i-|-v— /t;

also {i + v)^(i — 2fiy = i + 2v—4fi. This principle of neglecting

squares and cubes is often of great value in approximate numer-

ical computations; thus (1.02)2 = 1.04, and 0.994^ = (1—0.006)2 =
I —0.012 =0.988; also (0.994)* = (i —0.006)* = I —0.003 =o-997-

In a similar manner it is readily shown that a bar of length /,

breadth b, and depth d under compression in the direction of its

length, has the area of its section increased by 2kebd, and its

volvime diminished by {s— 2Xe)lbd, when s is the unit-shortening

of length under a stress not exceeding the elastic limit of the

material; Fig. 13& illustrates this case.

The number X is called the 'Factor of Lateral Contraction'

and sometimes also 'Poisson's Ratio'. It is of great theoretic

importance in many discussions of the mechanics of materials,

and of great practical value in the manufacture of guns.

Prob. 13a. Multiply together the numbers 0.989, 1.012, 1.005 by

the above approximate method, and find the percentage of error in

the result.

Prob. 136. A bar of structural steel, 2J inches in diameter and 18

feet 6 inches long, is under a tension of 64 000 pounds. Compute the

changes in length, section area, and volume.

Prob. 13c. A bar of wrought iron is one square centimeter in

section area and one meter long. Compute its length and section area

when stressed to its tensile elastic limit.
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Aet. 14. Work in Producing Deformation

When a bar is to be put under tensile stress, the load is a'pplied

by weights added in succession, or by means of a pull exerted

by a machine. In both cases the tension increases from o up

to P, arid the elongation of the bar increases from o up to e.

When the elastic limit is not exceeded, the elongations are pro-

portional to the applied forces, and the relation between them

may be represented by a straight line as in Fig. 14a. The work

done in elongating the bar is then the product of the mean force

|P into the distance e, or \Pe, and this is represented in the

figure by the area of the shaded triangle.

i

T""
1
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square inches; from Art. 1 the tensile unit-stress is 7 920 pounds

per square inch; from Art. 10 the unit-elongation e is 0.000 264.

Then from (14) the work done in one application of the load

is ^X 7920X0.000264 = 1.045 inch-pounds for each cubic inch

of the rod, and the total work is therefore 1.045X7.07X68=502

inch-pounds. The horse-power required to do this work is

then 502X1200/12X33 000 = 1.53.

When the unit-stress exceeds the elastic limit of the material,

the above formulas are not valid. In such cases, however, the

work done per unit of volume is given by the shaded area of

the stress diagram in Fig. 14c. This area may be approximately

ascertained by dividing it into trapezoids and computiag the

separate areas. The work done in stressing a steel bar up to

its ultimate strength is large compared with that required to

stress it up to its elastic limit, being sometimes more than five

hundred times as large.

In order to show this fact, the particular case of a steel speci-

men 4 inches long and 0.505 inches in diameter will be taken.

Load
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puted and the values of looe/l are the percentages of elongation

in the fourth column, while the loads divided by the section

areas give the unit-stresses in the third column. The elastic

limit was observed at 48000 pounds per square inch with 0.16

percent elongation. The elongation then rapidly increased with

the load, as seen in the diagram of Fig. 4. At 84 000 pounds

per square inch the maximum tensile strength was reached and

the specimen was elongating rapidly. The load was then slowly

slackened, but the elongation continued to increase very fast

until rupture occurred at 75 000 pounds per square inch. The
work done per cubic inch of material may be approximately com-

puted for any interval by multiplying the average unit-stress

during that interval by the unit-elongation which occurs. Thus

while the load ranged from 7 000 to 9 000 pounds the average

unit-stress was 40 000 pounds per square inch, and the unit-

elongation was 0.0014—0.0010=0.0004; hence the work per

cubic inch of material was 40000X0.0004 = 16 inch-pounds.

Thus the quantities in the fifth column of the table are computed

and the summation of these gives those in the last column.

This example shows that the work done on the specimen

in stressing it up to the elastic limit was 44 inch-pounds, while

the total work required to rupture it was about 18 600 inch-pounds,

both being per cubic inch of material. The volume of the speci-

men being 0.8 cubic inches, the approximate work required to

rupture it was 14 900 inch-pounds or i 240 foot-pounds.

Prob. 14a. Compute the work per cubic inch which is done in

stressing cast iron, wrought iron, and structural steel up to their elastic

limits.

Prob. 14J. How many foot-pounds of work are required to stress

a wrought-iron bar, 4 inches in diameter and 54 inches long from

6 000 pounds per square inch up to 12 000 pounds per square inch ?

Art. 15. Sheaeing Modulus of Elasticity

Let a body of constant cross-section and length I be subject

to shearing as shown in Fig. 15, the length / being short, so that

the rectangle ABCD is deformed into the rhombus ABC'D'.
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This deformation is caused by the force P acting at C normal to

BC, while the body is firmly held at AB so that the points A
and B remain immovable. Along

AB there then acts a force equal

I to that at C but in the opposite

direction, and the body is xmder

shear from the action of these two

forces (Arts. 1 and 6). The defor-
"

mation CC, generally called the
^'^' ^^

"detrusion", may be represented

by e, and the detrusion per unit of length is then e/l. In

tension and compression the deformation e is in the same direc-

tion as /, but in shear it is normal to I.

Let a be the section area of the short bar; then the shearing

unit-stress on it is Ss=P/a. In tension and compression this

stress acts normal to the section, but here it is parallel to the

section. If the elastic limit of the material is not exceeded by

the unit-stresses, the unit-detriisions are proportional to them, so

that the ratio of P/a to e/l is a constant, and this constant is

called the ' Modulus of Elasticity for Shear ' . Designating it by F,

there results,

F=^ or F=^ (15)
e/l £

where £ is the unit-detrusion e/l. These formulas are the same

as those of Art. 9, but the above remarks show that the mean-

ings of the letters e and e are somewhat different in the two cases.

The following are approximate average values of the shear-

ing modulus of elasticity as ascertained by experiments and

computations which are explained in Arts. 93 and 181

:

Material Shearing Modulus of Elasticity-

Timber, across grain 400 000 pounds per square inch

Cast Iron 6 000 000 pounds per square inch

Wrought Iron 10 000 000 pounds per square inch

Steel 12 000 000 pounds per square inch

For brick, concrete, and stone there is but little known regarding

the shearing modulus of elasticity.
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By the help of the above formulas, computations regarding

elastic deformations in shear may be made in the same manner

as those for tension and compression in Art. 10. For example,

take a short wooden block 6 inches long and 3X4 inches in sec-

tion subject to a shear of 24000 pounds. The shearing unit-

stress is 24000/12=2000 pounds per square inch, which is

probably a little less than the elastic limit for shear (Art. 2)

and hence the formula applies. The unit-detrusion then is

£ = 2 000/400 000=0.005, 3^d the total detrusion or lateral move-

ment of one end of the block with respect to the other is

e = 0.005 X 6 = 0.03 inches.

The work done in deforming the prism of Fig. 15 is ^Pe,

when the load is applied by increments so that the shearing

force increases from o up to P, and T?i4ien the ' elastic limit is

not exceeded by the unit-stress S. This work of elastic detru-

sion may be written |5e . al, which is identical with the expres-

sion deduced for tension or compression in the last article.

The above formulas cannot be used when the unit-stress 5
exceeds the elastic limit for shear, which is usually about 75 or

80 percent of that for tension. They cannot be used when the

length I is large compared with the lateral dimensions of the

body, for then a bending occurs so that BC is not a straight

line and in this case e/l cannot be a constant for variable values

of e and /. They are of principal value in discussing the twisting

of shafts (Art. 93).

Prob. 15. A cast-iron beam, 2 inches square, has two loads of

8 000 pounds near the supports as shown in Fig; 66. The beam

being originally horizontal, compute the inclination between a support

and a load after the loads are placed upon it.

Art. 16. Historical Notes

From the earliest times a few fundamental facts regarding

the strength of materials were undoubtedly known by experi-

ence, such, for instance, that stone was stronger than wood. No

quantitative results appear, however, to have been ascertained

and recorded until about the middle of the eighteenth century.
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The first investigation in the mechanics of materials seems to

be that made by Gahleo in 1638 on the flexure of a beam, in

which he regarded all the fibers as inextensible. It was not

until more than a century afterwards that tests of the strength

of bars were made, and these related almost entirely to its ulti-

mate strength, the elastic limit being unknown and unrecognized.

In 1678 Hooke announced the theory of "springy bodies"

which he expressed by "ut tensio sic vis ", namely, elongation

is proportional to force; three years previously he had performed

an experiment before the king of England which illustrated this

theory, and in 1676 he had announced it concealed in the ana-

gram "ceiiinosssttuv." Newton in 1704 conjectured that the

return of the body to its original form, after the removal of the

force, was caused by the mutual attraction of its particles.

Early in the nineteenth century appeared the Lectures on

Natural Philosophy by Young in which the modulus of elasticity

is for the first time introduced, but no note is made that it only

be deduced or applied when the elastic limit of the material is

not exceeded. The first observations regarding this limit were

made a few years later by the experimenters Barlow and Tred-

gold, who noted the permanent set in their tests of cast-iron bars.

After 1830 metallic bridges came into use through the necessi-

ties of railroad construction, and numerous experiments on cast

iron and wrought iron were made in England, France, and Ger-

many. In 1849 a British commission conducted tests of these

metals more exhaustive than any made before, and for the first

time established definite conclusions regarding the use of factors

of safety, one of which was that the factor for cast iron should

be twice as great for sudden loads as for steady ones. After

this date specifications for important structures contained require-

ments regarding working stresses, laboratories for testing mate-

rials were established, improved methods and machines were

devised, and the theory of the subject was greatly extended.

The first testing machines in the United States of America

were those built between 1850 and i860 for experiments on gun-

metal. At the present time every large manufacturer of iron
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and steel has a testing laboratory where specimens are con-

stantly broken in order to gain knowledge whereby the quality

of the product may be improved or to be certain that it meets

the specifications of the buyers. All engineering colleges have

testing laboratories for the instruction of students and for

scientific research. The literature of the subject is enormous,

and societies, both national and international, have been formed

to improve the methods of testing and to render more perfect

the knowledge of the properties of materials under stress. All

this work has been done for the purpose of advancing stability

and economy in engineering construction, and the two principles

stated in Art. 7 have been its fundamental guides.

The average values of the elastic limits, moduluses of elasticity,

tiltimate strengths and ultimate elongations given in the pre-

ceding pages and in Tables 2, 3, 4, at the end of this volume,

iave been derived from the records of tests made since 1850.

It must not be forgotten that these values are subject to much
variation, depending upon the quality of the material, its method

of manufacture, and to some extent upon the suddenness with

which the forces are applied. In practice all these points must

be carefully considered and precise knowledge be obtained, as

jar as possible, regarding the actual material in hand. The next

chapter gives more detailed information regarding the elasticity

and strength of different qualities of the materials mentioned

in the preceding pages and also of other materials used in

engineering and the arts, while Arts. 168-170 give discussions

regarding methods of testing.

Prob. 16a. Consult Vol. I of Todhunter's History of the Elasticity

and Strength of Materials and ascertain the exact words in which

Young defined the Modulus of Elasticity.

Prob. 166. "Tests of Metals at the Watertown Arsenal" is the

title of a publication issued yearly by the Ordnance Department of

the U. S. Government. Consult one of these volumes and ascertain,

the elastic limit and ultimate strength of rifle-barrel steel.
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Chapter III

MATERIALS OF ENGINEERING

Art. 17. Average Weights

The following are average values of the weights per unit

of voliune and of the specific gravities of the principal materials

used in engineering constructions. These - weights should be

carefully memorized by the student as a basis for more precise

Material Weight Specific Gravity

Brick 125 pounds per cubic foot 2.0

Stone 160 pounds per cubic foot 2.6

Timber 40 pounds per cubic foot 0.6

Cast Iron 450 pounds per cubic foot 7.2

Wrought Iron 480 pounds per cubic foot 7.7

Steel 490 pounds per cubic foot 7.8

knowledge, but.it must be noted that they are subject to con-

siderable variation with the quality of the material. For instance,

brick may weigh as low as 100 or as high as 150 pounds per

cubic foot, according as it is soft or pressed. Unless otherwise

stated, the above average values will be used in all the follow-

ing examples and problems of this volume. Table 1, at the end

of this volume, gives these constants in metric measures, and it

will be noted that the unit-weights in this convenient system are

multiples of the specific gravities.

The following approximate simple rules, stated in 1885 in

the first edition of this book, are in general use among engineers

for computing the weights of bars and beams which are of

uniform cross section:

A wrought-iron bar one square inch in section and one

yard long weighs ten pounds.

Steel is about two percent heavier than wrought iron.

Cast iron is about six percent lighter than wrought iron.

Stone is about one-third the weight of wrought iron.
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Brick is about one-fourth the weight of wrought iron.

Timber is about one-twelfth the weight of wrought iron.

For example, consider a bar of wrought iron 1^X3 inches and

12 feet long; its section area is 4.5 square inches, hence its weight

is 45X4 = 180 pounds. A steel bar of the same dimensions

weighs i8o-|-o.o2Xi8o=about 184 pounds, a cast-iron bar

weighs 180—0.06X180 =about 169 pounds, and a timber bar

weighs 180/12= about 15 pounds.

By reversing the above rules, the section areas of bars are

readily computed from their weights per yard. Thus, if a stick

of timber 15 feet long weighs 120 pounds, its weight per yard is

24 pounds, and its section area is i2X2-.4 = 28.8 square inches

approximately. Again, if a steel bar weighs 26.5 pounds per

linear foot, its section area is 3X26.5(1 — 0.02)710 = 7.79 square

inches.

It may be noted that, as a rough general rule, the strengths

of heavy bodies are greater than those of lighter bodies of the

same size. Thus, steel is the heaviest material of construction

and it is the strongest. Strictly speaking this rough rule applies

only to materials of a similar nature, and is only vahd for com-

paring metals with metals, stony materials with stony materials,

and timber with timber. Thus, the heaviest kinds of timber

are the strongest, but many kinds of timber are stronger than

stone or brick.

Prob. 17. What is the weight of a stone block 12X18 inches in sec-

tion area and 5 feet long? If a cast-iron pipe 12 feet long weighs

985 pounds, what is its section area ?

Art. 18. Plasticity and Brittleness

The property of elasticity which has been explained in the

preceding chapters is possessed by different materials in differ-

ent degrees. A perfectly elastic material is one which springs

_back to its original shape on the removal of the apphed force,

this force having any magnitude less than that required to cause

rupture. No material with perfect elasticity is known; india-

rubber is the nearest approach to it, but even this fails to return



44 Materials of Engineering Chap. Ill

to its original form when it has been under stress for some time.

Wrought iron and steel are only elastic when the applied force

is less than about fifty or sixty percent of that required to cause

rupture, that is, when the unit-stress does not exceed the elastic

limit (Art. 2). Cast iron, stone, and timber have poorly defined

elastic limits, as the stress diagrams in Fig. 11a show, and for

many qualities small stresses produce permanent sets, so that their

degree of elasticity is less than that of wrought iron and steel.

A material which has no elasticity, so that the smallest forces

cause permanent deformations, is called 'plastic'. Lead is an

example of a plastic material, for a flow of the metal occurs under

slight forces and there is no return to the original form. Lead

has no elastic limit, and it has no ultimate compressive strength

in the ordinary sense, for the material flows as the compression

is applied, so that the original prism constantly decreases in height

and increases in section until it becomes a thin sheet.

Wrought iron and structural steel are materials which are

more or less plastic under stresses exceeding their elastic limits.

In tension bars of these materials recover a small part of their

original length on the removal of the load, and hence they have

some elasticity, but the elongation which remains as perma-

nent set represents their plasticity. Under compression the

elasticity is less and the plasticity is more marked, especially

for structural steel, so that this variety of steel caimot be said

to have a compressive strength in the ordinary sense, its behavior

resembling that of lead.

A material which cannot change its shape without rupture

is said to be 'brittle'. There is no body perfectly brittle, but

glass approaches it most nearly, since small changes of shape

are followed by rupture. Cast iron is the most brittle of the

common materials of construction, since its percentage of elon-

gation under tension is the least (Art. 4). Brick and stone are

brittle materials compared with timber or steel. In general

the greater the deformation which a body will withstand before

rupture the less is its degree of brittleness. Plasticity is the

reverse of brittleness.



Art. 18 Plasticity and Brittleness 45

When bars are subject to tensile stress, those of brittle mate-

rial rupture with but slight change in the area of the cross-sec-

tion, while those of plastic material rupture with a considerable

reduction of area accompanied by a taper on each side of the

place of rupture. The greater the reduction of area (Art. 12)

the less is the degree of brittleness of the material. When prisms

are subject to compressive stress, those of brittle material rup-

ture by an oblique splitting or shearing, as seen in Fig. 1696,

which shows a cement cube and an oak block. The greater the

brittleness the greater is the inclination of these shearing planes

to the horizontal. Fig. 18a indicates these lines of rupture for

anthracite coal, Fig. 185 for paving brick. Fig. 18c for cement

or concrete, and Fig. 18d for timber; in all these cases the change

in section area is very slight. For a plastic material, however,

the increase in section area is large, and no shearing planes arise

;

Fig. 18e illustrates this case.

1 ±
GID
Fig. 18e

T 1
Fig. 18a Fig. 186 Fig. 18c Fig. ISd

The materials of engineering all possess a certain degree of

elasticity and certain degrees of plasticity and brittleness. Hard

steel is elastic within the elastic limit; beyond that limit it is

in part elastic, in part plastic, and in part brittle, while soft steel

has but little brittleness. Cast iron has defective elasticity, no

plasticity, and considerable brittleness. Timber resembles cast

iron in regard to elasticity, but some varieties are more plastic

than brittle.

The word elasticity is used in the mechanics of materials

with a slightly different meaning from that of popular language.

In common parlance a body is called elastic when it can undergo

great deformations and then recover its original form, the greater

the stretch under a given force the greater being the elasticity.

Jn the mechanics of materials the amount of the deformation

is not considered, but merely the ability to return to the original
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shape. In common language steel would not be spoken of as an

elastic material, but according to the definition here given its

degree of elasticity is a high one if the unit-stress does not exceed

the elastic limit. The constant called the modulus of elasticity

(Art. 9) is really an index of stiffness, that is, the higher the

modulus the less will be the amount of deformation under a

given unit-stress.

Prob. 18a. What is the weight in kilograms of a pig of lead, 0.75

meters long and 215 square centimeters in section area, its specific

gravity being 11.38?

Prob. 18b. A concrete cube weighed i8ii ounces in air and 107J
ounces in water. Compute its specific gravity, and its weight in pounds

per cubic foot. What was the size of the concrete cube ?

Art. 19. Timber

Good timber is of uniform color and texture, free from knots,

sapwood, wind-shakes, worm-holes, or decay; it should also be

well seasoned, which is best done by exposing it for two or three

years to the weather to dry out the sap. The heaviest timber

is usually the strongest; also the darker the color and the closer

the annular rings the stronger and better it is, other things being

equal. The strength of timber is always greatest in direction

of the grain, the sidewise resistance to tension or compression

being scarcely one fourth of the longitudinal.

The following table gives average values of the ultimate

Kind
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strength of a few of the compion kinds of timber as determined

from tests of small specimens which were carefully selected and

dried. Large pieces of timber, such as are actually used in

engineering structures, have an ultimate strength of from fifty

to eighty percent of these values. Moreover the figures are liable

to a range of 25 percent on account of variations in quality knd

condition arising from place of growth, time when cut, and method

and duration of seasoning. The amount of moisture in timber

also influences its strength; timber which has absorbed water

in amount equal to one-half of its dry weight has a strength

only about one-half that of dried timber. To cover all these

variations the factor of safety of 10 (Art. 7) is not too high.

The column headed ' computed flexure strength ' in the

above table gives the unit-stress computed from the rupture of

beams, using the flexure formula (Art. 41). This quantity is

always intermediate between the tensile and compressive strengths,

but it is not a physical constant, as will be explained in Art. 52

;

it is sometimes called the 'modulus of rupture'.

The shearing strength of timber is still more variable than

the tensile or compressive resistance. White pine across the

grain may be put at 2 500 pounds per square inch, and along

the grain at 500. Chestnut has i 500 and 600, yellow pine and

oak about 4 000 and 600 pounds per square inch in these direc-

tions respectively.

The elastic limit of timber is poorly defined. In precise

tests on good specimens it is sometimes observed at about one-

half the ultimate strength, but under ordinary conditions it is

safer to put it at one-third. The modulus of elasticity ranges

from I 000 000 to 2 000 000 pounds per square inch, i 500 000

being a good mean value to use in general computations. The

ultimate elongation is small, usually being between i and 2 per-

cent. Fig. 169& shows the common way in which a short timber

prism ruptures under compression.

The tests published in the Census Report on the Forest Trees

of North America (1884) are very comprehensive, as they include

412 species of timber. Of these 16 species have a specific gravity
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greater than i.o and 28 species less than 0.4. Even in the same

species a great variation in weight was often found; for instance

white oak ranged from 42 pounds to 54 pounds per cubic foot.

The heaviest wood weighed 81 pounds per cubic foot and had

a compressive strength of 12 000 pounds per square inch; the

lightest wood weighed 16 poimds per cubic foot and had a com-

pressive strength of 200 pounds per square inch.

Prob. 19ffl. Which is the safer under compression, hemlock under

600 or white oak under 800 pounds per square inch ?

Prob. 19b. Square sticks of white pine and yellow pine are subject

to -a steady load which brings a tension of 10 000 pounds upon each.

Compute their size for the proper factor of safety.

Art. 20. Beick

Brick is made of clay which is prepared by cleaning it care-

fully from pebbles and sand, mixing it with about one-half its

volume of water and tempering it by hand stirring or in a pug-

mill. It is then molded into rectangular form either in wooden

boxes by hand or in metal forms by machines, and the green

bricks are placed under open sheds to dry. These are piled

in a kihi and heated for nearly two weeks or until those nearest

to the fuel assume a partially vitrified appearance.

Three qualities of brick are taken from the kiln: 'arch brick'

are those from around the arches where the fuel is burned

—

these are hard and often brittle; 'body brick', from the interior

of the kiln, are of the best quality; 'soft brick', from the exterior

of the pile, are weak and only suitable for filling. Paving brick

are burned in special kilns, often by natural gas or by oil, the

rate of heating being such as to insure toughness and hardness

and also a uniform product throughout the entire kiln.

A common size is 2^X4X8^ inches, and the average weight

4I pounds. A pressed brick, however, may weigh nearly 5^
pounds. Good bricks should be of rejgular shape, have parallel

and plane faces, with sharp angles and edges. They should be

of uniform texture and when struck a quick blow should give a
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sharp metallic ring. The heavier the brick, other things being

equal, the stronger and better it is.

Poor brick will absorb when dry from 20 to 30 per cent of

its weight of water, ordinary qualities absorb from 10 to 20 per-

cent, while hard paving brick should not absorb more than 2 or

3 percent. An absorption test is valuable in measuring the

capacity of brick to resist the disintegrating action of frost, and

as a rough general rule the greater the amount of water absorbed

the less is the strength and- durability.

The compressive strength of brick is variable; while a mean
value may be 2 500 pounds per square inch, soft brick will

scarcely stand 500, pressed brick may run to 10 000, and the

best qualities of paving brick have given 15 000 pounds per

square inch, or even more. Compressive tests are generally

made on half-bricks, the compression being applied normal

to the sinallest side, that is parallel to the width of the brick;

the failure usually occurs by an oblique shearing as indicated

in Fig. 186.

Brick is rarely used in tension and but little is known of its

behavior imder such stress; the ultimate tensile strength may
perhaps range from 50 to 500 pounds per square inch. The

ultimate shearing strength of good building brick is about 500

pounds per square inch, and higher for the paving qualities.

Brick may be classed as a brittle material, the stress dia-

gram resembling that of cast iron. Its elastic limit is not well

defined, but its deformation within that limit is greater than

that of cast iron, the modulus of elasticity E generally ranging,

from I cxx) 000 to 3 000 000 poimds per square inch. Bricks

saturated with water have about the same strength and elastic

properties as dry bricks.

Brick masonry has a much smaller strength than that of

the individual bricks, on account of the lack of perfect union

at the joints and also of the generally lower strength of the mor-

tar. The strength of a brick pier, indicated by the loosening

and cracking of the joints, is about one-fourth of the compres-

sive strength of an individual brick.
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Prob. 20a. Using the mean values of Arts. 5 and 17 and the state-

ment of the last paragraph, compute the height of a brick tower which

will crush at the base under its own weight.

Art. 21, Stone

Sandstone, as its name implies, is sand, usually quartzite,

which has been consolidated under heat and pressure. It varies

much in color, strength, and durability, but many varieties form

most valuable building material. In general it is easy to cut

and dress, but the variety known as' Potsdam sandstone is very

hard in some localities.

Limestone is formed by consolidated marine sheUs, and is

of diverse quality. Marble is limestone which has been reworked

in the laboratory of nature so as to expel the impurities, and

leave a nearly pure carbonate of lime; it takes a high polish,

is easily worked, and makes one of the most beautiful building

stones.

Granite is a rock which was formerly supposed to be of aqueous -

origin metamorphosed under heat and pressure, but it is now

generally thought to be of igneous origin; its composition is

quartz, feldspar, and mica, but in the variety called syenite

the mica is replaced by hornblende. It is fairly easy to work,

is usually strong and durable, and some varieties will take a

high polish.

Trap, or basalt, is an igneous rock without cleavage. It is

hard and tough, arid less suitable for building constructions

than other rocks, since large blocks cannot be readily obtained

and cut to size. It has, however, a high strength and is remark-

able for durability.

The average weights and ultimate strengths of these four

classes are given in the following table. These figures refer

to small specimens such as can be broken in a testing machine,

and it is known that the strength of large blocks per square inch

is materially less. The rupture of a cube or prism of stone

under compression often occurs by splitting, or rather shearing,
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in planes making an angle of about 25 degrees with the direc-

tion of the pressure (see Fig. 186).

Kind
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Prob. 21. How many cubic yards of masonry are contained in a

pier 12X30 feet at the base, 8X24 feet at the top, and 16^ feet high?

What is its cost at $6.37 per cubic yard?

Art. 22. Mortar and Concrete

Common mortar is composed of one part of lime to five parts

of sand by measure. When six months old its tensile strength

is from 15 to 30 and its compressive strength from 150 to 300

pounds per square inch. Its strength slowly increases with age,

and a smaller proportion of sand produces mortar stronger than

the above values.

Hydraulic mortar is composed of hydraulic cement and

sand in varying proportions. The less the proportion of sand

the greater is its strength. If 5 be the strength of neat cement,

that is, of cement with no sand, tlie strength of mortar having

p parts of sand to one part of cement is about S/(i+p) as a

rough approximation. A common proportion is 3 parts of sand

to I of cement, the strength of this being about one-fourth that

of the cement itself. The strength of hydraulic mortar also

increases with its age.

There are two classes of hydraulic cements, the natural

cemeiits and the Portland cements. The former are of lighter-

tolor, lower weight, and lesser strength than the latter, but they

are quicker in setting and cheaper in price. The following

table gives average ultimate tensile strengths in pounds per

Proportion
ofSand
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of briquettes carefully made in molds, and are higher than

hydraulic mortar made under usual circumstances will give.

The briquette is removed from the mold when set, allowed to

remain in air for one day, and then put under water for the

remainder of the time.

Since cements and mortars are used only in compression, the

tensile tests may seem an inappropriate one. Compressive tests,

however, are more expensive than tensile ones. It may be taken

as a general rule that the compressive strength of a material

increases with the tensile strength, and it is certain that the

universal adoption of the tensile tests has done much to greatly

improve the quality of hydraulic cements.

For neat cement a one-day tensile test is frequently employed,

the briquette being put under water as soon as it has set. For

natural cement a briquette one square inch in section should

give a tensile strength of 75 poimds, while one of Portland cement

should give 125 pounds. To secure these results, however,

the material should be thoroughly rammed into the molds,

no more water being used than necessary, and the quality of

the cement must be good.

The compressive strength of hydraulic cements and mortars

is from six to ten times the tensile strength. Fig. 169& shows

the manner in iwhich a cube of cement fails under compression.

Neat Portland cement when one month old has a compressive

strength of about 3 000, and when one year old about 5 000

poxmds per square inch. Natural cement mortar when three

or four years old has a compressive strength of about 2 500 pounds

per square inch. The adhesion of cement to stone or brick is

somewhat less than the tensile strength. The shearing strength

of cement or mortar is much less than the compressive strength,

usually only about one-fourth or one-third.

The strength of cement and mortar is influenced by many

causes: the quality of the stone or materials from which the

cement is made, the method of manufacture, the age of the

cement, the kind of sand, the method of mixing, and even the

amoimt of water used. Mortar joints are, as a rule, weaker
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than the bricks or stones which they unite, and the failure of a

masonry wall usually begins by cracking along these joints.

Concrete is an artificial stone which is made by mixing

hydraulic mortar and broken stones. The best proportions

are such that the grains of sand fill all the voids between the

stones, while the cement fills all the voids between the sand grains,

as also those between the sand and the stones. Common pro-

portions for a first-class concrete are i cement, 2 sand, and 4

broken stone, by measure. Concrete is mainly used for floors.

Walls, foundations, and monolithic structures, but sometimes

blocks are made which are laid together like stone masonry.

Its use has greatly increased since 1900 and many concrete piers

and bridges have been built. Reinforced concrete is concrete

in which steel rods are imbedded in order to increase" its tensile

resistance (Art. 113).

The average weight of concrete is about 150 pounds per

cubic foot. Its strength increases with age, like that of hydraulic

mortar. For concrete made with the proportions i cement,

2 sand, 4 broken stone, when six months old, the average ten-

sile strength is 400 pounds per square inch, compressive strength

3 500 poimds per square inch, and modulus of elasticity 3 000 000

pounds per square inch. For concrete with the proportions

1 cement, 3 sand, 6 broken stone, when six months old, the aver-

age tensile strength is 300 pounds per square inch, compressive

strength 2 500 pounds per square inch, and modulus of elasticity

2 000 000 pounds per square inch. These figures refer to con-

crete in which Portland cement is used, the strength being about

twenty percent less for natural cement concrete. When one year

old the ultimate strengths are a little greater than the above

figures. The elastic limit of concrete is not well defined, and

if one is to be stated, that in compression may be roughly put

at about one-third or one-fourth of the compressive strength.

The allowable unit-stress usually ranges from one-sixth to one-

eighth of the ultimate strength.

Prob. 22. Let the pier of Problem 21 be concrete and carry a load

of 4600CXD pounds. Compute its weight and the compressive unit-

stress on its base.
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Art. 23. Cast Iron

Cast iron is a modem product, having been first made in

England about the beginning of the fifteenth century. Ores

of iron art melted in a blast furnace, producing pig iron. The
pig iron is remelted in a cupola furnace and poured into molds,

thus forming castings. Beams, columns, pipes, braces, and

blocks of every shape required in engineering structures are thus

produced.

Pig iron is divided into two classes. Foundry pig and Forge

pig, the former being used for castings and the latter for making'"

wrought iron and steel. Foundry pig has a dark-gray fracture,

with large crystals and a metallic luster; forge pig has a light-

gray or silver-white fracture, with small crystals. Foundry

pig has a specific gravity of from 7.1 to 7.2, and it contains from

6 to 4 percent of carbon; forge pig has a specific gravity of from

7.1 to 7.4, and it contains from 4 to 2 percent of carbon. The
higher the percentage of carbon the less is the specific gravity,

and the easier it is to melt the pig. Besides the carbon there

are present from i to 5 percent of other impurities, such as

silicon, manganese, and phosphorus.

The properties and strength of castings depend upon the

quality of the ores and the method of their manufacture in both

the blast and the cupola furnace. Cold-blast pig- produces

stronger iron than the hot-blast, but it is more expensive. Long-

continued fusion improves the quality of the product, as also

do repeated meltings. The darkest grades of foundry pig make

the smoothest castings, but they are apt to be brittle; the light-

gray grades make tough castings, but they are apt to contain

blow-holes or imperfections.

The percentage of carbon in cast iron is a controlling fact or

which governs its strength, particularly that percentage which

is chemically combined with the iron. For example, the fol-

lowing are the results of tests made by Wade about i860 of three

classes of cast iron then used for guns, the tensile strength being

in pounds per square inch

:
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Its ultimate elongation being scarcely one percent, the work

required to cause rupture is small compared to that for wrought

iron and steel. Cast iron is no longer used in bridges, and for

important buildings it has been but little employed since 1895.

Malleable_ cast iron is made by surrounding castings with

decarbonizing material and heating them in annealing ovens.

The carbon is thus partly removed to a certain depth below

the surface of the castings, and this renders the material much
stronger in tension, while its elongation is increased. The process

is only applicable to small castings, but for these the tensile strength

may be doubled and the ultimate elongation be made eight or

ten times as great as that of common cast iron, thus rendering

it more efl&cient in resisting shocks.

Prob. 23. Compute the weight of a cast-iron water pipe 12 feet long

and 20 inches in internal diameter, the average thickness of the metal

being ij inches.

Art. 24. Wrought Iron

The ancient peoples of Europe and Asia were acquainted

with wrought iron and steel to a limited extent. The name of

an ironmaster is mentioned in Genesis iv 22, and in one of

the oldest pyramids of Egypt a piece of iron has been found.

It was produced, undoubtedly, by the action of a hot fire on

very pure ore. The ancient Britons built bloomaries on the

tops of high hills, a tunnel opening toward the north furnishing

a draft for the fire which caused the carbon and other-impurities

to be expelled from the ore, leaving behind nearly pure metallic

iron.

Modem methods of manufacturing wrought iron are mainly

by the use of forge pig (Art. 23) in the puddling process. Here

the forge pig is subjected to the oxidizing flame of a blast in a

reverberatory furnace, where it is formed into pasty balls by the

puddler. A ball taken from the furnace is nm through a squeezer

to expel the cinder and then rolled into a muck bar. The muck
bars are cut, laid in piles, heated, and rolled, forming what is

called merchant bar. If this is cut, piled, and rolled again a
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better product called best iron is produced. A third rolling

gives 'best-best' iron, a superior quality,,but high in price.

The product of the rolling mill is bar iron, plate iron, shape

iron, beams, and rails. Bar iron is round, square, and rectan-

gular in section; plate iron is from J to i inch thick, and of vary-

ing widths and lengths; shape iron includes angles, tees, channels,

and other forms used in structural work; beams are I-shaped,

and of the deck or bulb form (Art. 44).

Wrought iron is metallic iron containing less than 0.25 per-

cent of carbon, and which has been manufactured without cast;

ing from the fluid state. Its elastic limit is well defined at about

24 000 pounds per square inch and the yield point at about

26 000 pounds per square inch; within this limit it is stiffer than

cast iron, the modulus of elasticity being about 25 000 000 pounds

per square inch. Its average ultimate tensile strength is about

50 000 pounds per square inch, and its ultimate elongation is

from 25 to 30 percent. In comparison it is plastic beyond the

elastic limit, so that the compressive strength given in Art. 5

has but little meaning. Jt is malleable, can be forged and welded,

and has a high capacity to withstand the action of shocks; it

cannot, however, be tempered so as to form cutting tools.

The cold-bend test for wrought iron is an important one for

judging of general quality. A bar, perhaps fxf inches and

15 inches long, is bent when cold either by pressure or by blows

of a hammer. Bridge iron should bend, without cracking, through

an angle of 90 degrees to a qurve whose radius is twice the thick-

ness of the bar. Rivet iron should bend, without showing signs

of fracture, through 180 degrees until the sides of the bar are in

contact. Wrought iron that breaks under this test is lacking

in both strength and ductility.

The process of manufacture, as well as the quality of the

pig iron, influences the strength of wrought iron. The higher

the percentage of carbon the greater is the strength. Best iron

is 10 percent stronger than ordinary merchant iron owing to the

influence of the second rolling. Cold rolling causes a marked

increase in elastic limit and ultimate strength, but a decrease



Art. 24 WeOUGHT Iron 59

in ductility or ultimate elongation. Annealing lowers the ulti-

mate strength, but increases the elongation. Iron wire, owing

to the process of drawing, has a high tensile strength, sometimes

greater than loo ooo pounds per square inch.

Good wrought iron when broken by tension shows a fibrous

structure. If, however, it be subject to shocks or to repeated

stresses which exceed the elastic limit, the molecular structure

becomes changed so that the fracture is more or less crystalline.

The effect of a stress exceeding the elastic limit is to cause a

permanent set, but the elastic limit will be found to be higher

than before. This is decidedly injurious to the material on

account of the accompanying change in structure and because

its capacity to resist work is less than before, as Fig. 116 shows;

hence it is a fundamental principle that the working unit-stresses

should not exceed the elastic limit. For proper security the

allowable unit-stress should' seldom be greater than one-half

the elastic limit.

Prior t,o 1890 wrought iron was generally employed for struc-

tural purposes, but medium steel, on account of its smaller cost

and greater strength, then began to come into use, and the change

was so rapid that since 1900 it has almost entirely displaced

wrought iron in bridge and building construction. Wrought iron

is, however, still employed for chains, for stay bolts, and for many
other purposes where great ductility and toughness are demanded.

Owing to the fact that it was used so extensively in the nineteenth

century and that its properties were then so well ascertained by

numerous tests, it will long remain in engineering literature as

a standard with which other materials may be advantageously

compared. Since 1900 much pig iron has been made in America

by casting in open molds instead of in a sand bed, and wrought

iron made from such pig appears to be lower in strength than that

of the nineteenth century.

Prob. 24. Compute the section area of a wrought-iron bar 30 feet

long which weighs 418 pounds. If this bar is hung vertically at its

upper end, compute the unit-stress at that end and at the middle.

What load, hung at the lower end, will stress it to the elastic limit ?
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Art. 25. Steel

Steel was originally produced directly from pure iron ore by

the action of a hot fire, which did not remove the carbon to a

sufficient extent to form wrought iron. The modem processes,

however, involve the fusion of the ore, and the definition of

the United States law is that " steel is iron produced by fusion

by any process, and which is malleable." Chemically, steel is a

compound of iron and carbon generally intermediate in com-

position between cast and wrought iron, but having a higher

specific gravity than either. The following comparison points

out the distinctive differences between the three kinds of iron:

Percent of Specific
ProDerties

Carbon Gravity ^

Cast iron, 5 to 2 7.2 Not malleable, not temperable

Steel, i.5otoo.io 7.8 Malleable and temperable

Wrought iron, 0.30 to 0.05 7.7 Malleable, not temperable

It should be observed that the percentage of carbon alone is

not sufficient to distinguish steel from wrought iron; also, that

the mean values of specific gravity stated are in each case sub-

ject to considerable variation; further, only the hard steels are

temperable, the softer grades resembling wrought iron.

The three principal methods of manufacture are the cruci-

ble process, the open-hearth process, and the Bessemer process.

In the crucible process impure wrought iron or blister steel,

with carbon and a flux, are fused in a sealed vessel to which

air cannot obtain access; the best tool steels are thus made.

In the open-hearth process pig iron is melted, wrought-iron

scrap being added until the proper degree of carbonization is

secured. In the Bessemer process pig iron is completely decar-

bonized in a converter by an air blast and then recarbonized

to the proper degree by the addition of spiegeleisen. The metal

from the open-hearth furnace or from the Bessemer converter

is cast into ingots which are rolled in mills to the required forms.

The open-hearth process produces steel for machines, shafts,

axles, springs, armor plates, and for structural purposes; the

Bessemer process mainly produces steel for railroad rails.
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'Acid steel ' is that made in a furnace having a silicious lining,

while 'basic steel' is that made in a furnace with dolomitic linings.

These terms have no reference to quality and refer mainly to

process of manufacture, but the basic process enables ores high

in phosphorus to be used, the phosphorus being removed by

the addition of lime. Acid steel is slightly stronger than basic

steel, owing partly to the higher percentage of phosphorus and

pardy to the eifect of the lime in forming slag in the basic steel.

Since 1900 more than three-fourths of the open-hearth steel pro-

duced in the United States has been basic; the Bessemer product

on the other hand being entirely acid.

The physical properties of steel depend both upon method

of manufacture and chemical composition, the carbon having

• the controlling influence upon strength. Phosphorus increases

strength, but it promotes brittleness ; manganese increases

strength in a less degree, and it promotes malleability; sulphur

causes red-shortness, or a tendency of the steel to crumble while

being rolled; and silicon increases hardness.

Many formulas have been deduced to exhibit the relation

between the tensile strength and the chemical composition, but

none of these applies to all classes of steel. The rough rules,

St=45 ooo-l- 108 oooC St=45 ooo-l- 90 oooC

give an approximate idea of the influence of carbon in acid and

basic unannealed open-hearth steel respectively, C being the

percentage of carbon and St the tensile strength in pounds per

square inch. Thus, acid steel with 0.40 percent of carbon has a

tensile strength of about 88 000 pounds per square inch, while

basic steel has about 81 000 pounds per square inch. When the

percentages of ,phosphorus and manganese are also known, the

following formulas which have been deduced from the exhaustive

discussion given by Campbell in 1905 may be used to give

more reliable results, namely,

5(=40 ooo-f 68 oooC-l- 100 oooP-|- 80 oooCM

5,= 38 8oo-f-6s oooC-l- 100 000^+9 oooilf-f 40 oooCM

the first being for acid and the second for basic open-hearth
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steel. Here C is the percentage of carbon, P that of phosphorus,

M that of manganese, and St the tensile strength in pounds per

square inch. For example, acid steel having 0.344 percent of

carbon, 0.045 percent of phosphorus, and 0.70 per cent of

manganese has a tensile strength of 87 200 pounds per square

inch; basic steel having 0.344 percent of carbon, 0.020 percent

of phosphorus, and 0.35 percent of manganese has a tensile

strength of 71 100 pounds 'per square inch. These formulas do

not apply to steel with a percentage of carbon higher than 0.75.

Carbon is the controlling element in regard to strength, and

the same is the case with respect to ultimate elongation. The
higher the percentage of carbon, within a reasonable limit, the

greater is the strength and the less the ultimate elongation. The
product of strength and elongation is approximately constant,

and hence the ultimate elongation is approximately inversely

proportional to the tensile strength. A rule frequently given is

that the percentage of elongation equals 1 500 ooo/5j; thus,

for a tensile strength of 80 000 pounds per square inch the ulti-

mate elongation is about 19 percent. This rule, however, gives

too high elongations for very strong steel.

A classification of steel according to the percentage of car-

bon which it contains and its-capacity for taking temper or being

welded, is as follows

:

Soft, 0.05-0. 20C, not temperable, easily welded

Medium, 0.15-0.40C, poor temper, weldable

Hard, 0.30-0.70C, temperable, welded with difficulty

Very hard, 0.60-1 .ooC, high temper, not weldable

It is seen that these classes overlap so that there is no distinct

line of demarcation, and in fact the words soft, medium, and

hard, are frequently used without precision and only for com-

parative purposes. The term 'strong steel' in the two pre-

ceding chapters has been introduced for educational purposes

only, in order to divide steel into two classes for the benefit of

beginners in engineering.

Steel is frequently classified, with reference to its uses, and

the following is such a classification giving average elastic limits
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and ultimate tensUe strengths in pounds per square inch and
uhimate elongations in percentages. For the elastic limit a

variation of about 2 000 and for the ultimate strength a varia-

Elastic Limit Tensile Strength Elongation
Structural steel

for rivets 30 ocx) 55 000 30
for beams and shapes 35 000 60 000 27

Boiler steel

for rivets 25 000 50 000 30
for plates 30 000 60 000 26

Machinery steel 40 000 75 000 20

Gun steel 50 000 90 000 18

Axle steel 55 000 100 000 15

Spring steel 60000 125000 12

Cable wire steel 100 000 200 000 8

tion of 4 000 or 5 000 pounds per square inch from these mean

values may be expected. The ultimate elongations are subject

to marked variation according to the ratio of the length of the

test specimen to its diameter; those here given are for the standard

8-inch specimen (Art. 169). In Fig. 169a are shown an unbroken

and two broken specimens of the 2-inch size which has been

much used since 1900; this gives higher percentages of elongation

than the 8-inch specimen.

The soft and medium steels resemble wrought iron in having

a yield point (Art. 11) which is from 2 000 to 4000 pounds per

square inch above the elastic limit, while very hard steels have

no yield point, as the stress diagrams in Fig. 11a show. The

elastic limit in tension is a little higher than one-half of the uti-

mate strength. The modulus of elasticity is subject to but little

variation with the percentage of carbon, and the mean value of

30 000 000 pounds per square inch may be used in computations

for both tensile and compressive stresses that do not exceed the

elastic Hmit. The modulus of elasticity for shearing is about

three-eighths of that for tension and compression. Soft and

medium steel wUl withstand a cold-bend test, similar to that

described in the last article, but some of the hard steels will fail

to do so on account of their lack of ductility.
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The compressive strength of the soft steels may be said to

be about the same as the tensile strength, since when this pres-

sure is reached the shortened specimen is badly cracked. The
soft steels resemble wrought iron in being plastic under com-

pressive stress exceeding the elastic limit, and some authorities

regard the yield point as the compressive strength. Hard steels^

on the other hand, are not plastic beyond the elastic limit, but

their behavior is like that of brittle materials (Art. 18). The

compressive strength of the hard steels is much higher than the

tensile strength and in this respect they resemble cast iron; the

greatest value recorded is 392 000 pounds per square inch. The
shearing strength of steel is usually about eighty percent of the

tensile strength.

The strength of steel may be greatly increased by the processes

of forging and drawing. Forging under a hammer or press

renders the material more compact and increases both specific

gravity and strength. The process of drawing steel bars into

wire has a similar result, and wire has been made having a ten-

sile strength of 250 000 pounds per square inch, while the wire

used for the cables of suspension bridges usually has a tensile

strength of from 150 000 to 200 000 pounds per square inch. By

compressing steel while it is fluid, the strength may also be much
increased, and this process is used for the steel from which large

guns and hollow shafts are made.

Annealing consists in raising cold steel to a light red heat

and then allowing it to cool for several days. This process reduces

the ultimate strength, but it increases the ductility. As an

example, the following table gives some of the results from a

large series of specimens prepared by the Bethlehem Steel Com-

pany in 1893 and now kept at Lehigh University; the table

refers to flat bars of Bessemer steel. Art. 119 shows that anneal-

ing increases the capacity of steel to resist work.

Tempering consists in plunging heated steel into a bath of

water or oil, or by applying these fluids to its surface. The

hardness of the steel and its ultimate strength are thereby much

increased. Armor plate undergoes special processes of temper-
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ing or carbonization which render it excessively hard and tough
in order that it may resist projectiles which strike it.
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Art. 26. Other Materials

Several kinds of artificial stone have been made since 1870,

most of them having hydraulic cement and sand as the prin-

cipal ingredients. Beton consists only of those materials which

are subject to prolonged trituration, so that its strength is much

greater than ordinary concrete. Frear stone is made from cement

and sand with a small quantity of gum shellac. Ransome stone

is made from sand and sodium silicate which are thoroughly

incorporated in molds and then the blocks are put under pres-

sure in a hot solution of calcium chloride. Sand-lime brick,

which has been extensively made since 1900, is an artificial stone

made by consolidating heated sand and lime tuider pressure.

These artificial stones are used mainly for the walls of buildings,

for window lintels, and for steps.

Ropes are made of hemp, of manilla, and of iron or steel

wire with a hemp center. A hemp rope one inch in diameter

has an ultimate strength of about 6 000 pounds, and its safe

working strength is about 800 pounds. A manilla rope is slightly

stronger. Iron and steel ropes one inch in diameter have ulti-

mate strengths of about 36 000 and 50 000 pounds respectively,

the safe working strengths being 6 000 and 8 000 pounds. As a fair

rough rule, the strength of ropes may be said to vary as the squares

of their diameters, that is, with the areas of the cross-sections.

Phosphor bronze is an alloy of copper and tin containing

from 2 to 6 percent of phosphorus. It is remarkable for its

complete fluidity so that most perfect Castings can be made.

It has been used for journal bearings, valve seats, and even for

cannon. It is hard and tough, and its ultimate tensile strength

may range from 40 000 to 100 000 pounds per square inch.

Aluminum is a silver-gray metal which is malleable and duc-

tile and not liable to corrode. Its specific gravity is about 2.65,

so that it weighs only 168 pounds per cubic foot. Its ultimate

tensile strength is about 25 000 pounds per square inch. It has

a low modulus of elasticity, and its ultimate elongation is small.

Alloys of aluminum and copper have been made with a tensile
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strength and elongation exceeding those of wrought iron, but

have not come into use as structural materials.

Numerous brasses and bronzes composed of copper, tin,

and zinc have been made. The strongest of these alloys was

ascertained by Thurston to be that composed of 55 parts of cop-

per, 43 of zinc, and 2 of tin, its ultimate tensile strength being

68 900 pounds per square inch with an elongation of 48 per cent

and a reduction of area of 70 percent.

Brass, which is composed of copper and zinc, is almost the

only alloy which has come into extensive use in the arts and

which at the same time is a fully reliable material. In the form

of castings it has a tensile strength of about 20 000 pounds per

square inch, in the form of rolled sheets or wire it has a much

greater strength. Brass water-pipes are now frequently used

in houses by those who can afford to pay as high a price as

20 cents per pound.

The tensile strength of lead is only about one-tenth of that of

brass, and it attains a permanent set under a very low. stress; it is

indeed almost devoid of elasticity, but has high plasticity. Glass

is very brittle, but under slowly applied loads it has a tensile

strength of about 5 000 aiid a compressive strength of about

8 000 pounds per square inch. Anthracite coal is a brittle mate-

rial, having a compressive strength of from 5 000 to 15 000 pounds

per square inch.

In conclusion it may be noted that the strength and other

properties of materials are subject to variation with temperature,

the mean values given in the preceding pages being for a tem-

perature ranging from 40 to 90 degrees Fahrenheit. Experi-

ments have shown that wrought iron and steel continually increase

in strength under static loads with decreasing temperatures, the

rate of increase being about four percent for each 100 degrees

of decrease in temperature. This rule applies for all ordinary

temperatures to which structures and machinery are subjected,

and to temperatures below 200 degrees Fahrenheit. As the tem-

perature rises above 200°, wrought iron and steel increase in

strength, attaining a maximum at about 500° and a rapid decrease
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then follows for higher temperatures; the elastic limit, however,

seems continually to decrease as the temperature rises. Steel and

other metals are more brittle at low temperatures than at high

ones, and the breaking of railroad rails in cold weather is attrib-

uted to brittleness and not to decrease in static strength.

Prob. 26a. A bar of aluminium copper, liXif inches in section

area, breaks under a tension of 42 800 pounds. What tension will

probably break a bar of the same material which is ifXaJ inches in

section area ?

Prob. 26fi. Compute the factor of safety of a cast-iron block, 2X2
feet in section area, when supporting a load of 2 165 net tons. What
should be the size of a white-oak block to cany the same load with a

factor of safety of 10 ?
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Chapter IV

CASES OF SIMPLE STRESS

Art. 27. Stress due to Own Weight

Tension, compression, and shear are often called the three

cases of simple stress, it being imderstood that the body or bar

is under only one of these stresses at the same time; In tension

and compression the loads act along the axis of the bar, in shear

they act normally to it. When a bar is vertical, its weight causes

stresses additional to those arising from the applied load, and

these will now be considered.

When an imloaded bar is himg vertically by one end, there

is no stress on the lower end, while at the upper end there is

a tensile stress equal to the weight of the bar. When a vertical

bar of wdght W has a load P at its lower end, the tensile stress

at that end is P and that at the upper end is F^-W. In many
practical cases W is small compared with P, so that it is unneces-

sary to consider it; a common rule is that the stress due to W
need not be regarded when it is less than ten percent of that

due to P. A steel bar one square inch in section area and 30 feet

long weighs about 102 pounds (Art. 17), and a stress of 100 pounds

per square inch is small compared with the elastic limit of the

material.

The limiting length of an unloaded vertical bar is that at

which it would break at the upper end under its own weight.

Let a be the section area of the bar, 5_the ultimate strength of

the material, v its weight per cubic unit, and / the limiting length.

Then the weight of the bar is vol, the tensile stress at its upper

end is aS, and hence for rupture S =vl, whence l=S/v. For

example, take a cast-iron bar for which S = 2o 000 pounds per

square inch or 2880000 pounds per square foot, and ^'=450

pounds per cubic foot; then the Hmiting length is / =

2880000/450=6400 feet. Of course, no vertical bar of this

length is possible.
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The limiting length of a vertical bar loaded at its lower end

is that at which it would break at the upper end under the stress

due to the load and its own weight. If P is the load at the lower

end, the stress at the upper end is P+val, and hence for rupture

Sa=P+val, from which l = {S-P/a)/v. Hence P/a is the

unit-stress due to P, and the formula shows that I is zero when

P/a equals the ultimate tensile strength of the material, For

a cast-iron bar let P/a be lo ooo pounds per square inch, then

the limiting length is 3 200 feet.

T
1

Fig. 27fl Fig. 27J

The elongation of a vertical bar under its own weight is one-

half of that caused by the same load applied at the lower end.

To show this, let I be the length, a the section area, and W the

weight of the bar. Let x be any distance from the lower end

(Fig. 27a), then W. x/l is the weight of this portion. The ele--

mentary elongation caused by this weight on the elementary

length dx is from (10) given by W(x/l)8x/aE, where E is the

modulus of elasticity. The integral of this between the limits

/ and gives e = ^Wl/aE, which is one-half the elongation due

to a load W at the end (Art. 10). In a similar manner the elonga-

tion due to the weight of the bar and a load P at the end is found

to be e = (^W+P)l/aE, and this is the,sum of the separate elonga-

tions due to W and P. These expressions apply also to the

corresponding cases of compression shown in Fig. 27b, but here,

as in tension, the formulas apply only when the greatest unit-

stress does hot exceed the elastic limit of the material.

Prob. 27a. Find the length ofa vertical wooden bar, 6X6 inches in

section area and having a load of 21 600 pounds at the lower end, so

that the stress at the upper end shall be 650 pounds per square inch.

Prob. 27b. Compute the elongation of the above bar due to the

load at the end and that due to its own weight.
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Art. 28. Bar of Uniform Strength

A suspension rod of constant cross-section is stressed at the

lower end by the load P, and at the upper end by P plus the

weight of the rod. When the rod is very long its section area

should be less at the lower than at the upper end in order both

to economize material and to reduce its weight. The rod in

such cases is sometimes made in parts, the section area of any

part being less than that of the one above it.

A vertical tension bar of uniform strength is one in which

the unit-stress is the same in all section areas. The theoretic

form for such a bar will now be de-

termined. Let P be the load applied

at the lower end, and 5 the allow-

able unit-stress; then the section

area of the lower end is a^ =P/S,

Lfet a be the section area at a dis- p. gg

tance y from the lower end; then

a+ da is the area at the distance y+ dy, and the area 8a must

be sufl&cient to resist the stress due to the weight of the bar in

the distance dy. Let v be the weight of a cubic unit of the mate-

rial, then the weight of the bar in the distance dy is va . dy, and

hence da==(va . 8y)/S, which may be written dy = {S/v){da/a).

Integrating this and determining the constant by the condition

that a equals ao when y is o, there is found,

y= (S/v) (log^a- log^oo)

in which the logarithms are in the Naperian system. Passing

to common logarithms by the well-known rules, this becomes,

loga=o.4343(v/S)y+logao

which is the formula for computing a at any distance y from the

lower end, cq being first found from ao=P/S. This formula

applies to compression as well as to tension, and the second dia-

gram in Fig. 28 illustrates this case.

For example, take a round masonry pier which is to carry

a load of 900000 pounds with an allowable working stress of

100 pounds per square inch or 14 400 pounds per square foot.
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The area of the top is 00=900/14.4=62.5 square feet, and

^5' = 160/14 400=0.01111. The formula then becomes log a =

0.004823/ +1.7959. The following values of the section area

y= o 10 20 30 40 feet

0=62.5 69.8 78.0 87.2 97.4 square feet

d= 8.92 9.43 9.97 10.54 11.14 feet

and the diameter of the pier are now computed for different

values of the height y, and it is seen that the profile of the pier

is slightly curved. The extra expense of construction of a pier

of uniform strength is, however, usually greater than that of the

extra amount of material of a trapezoidal profile, so that the

latter is generally used. A round pier with trapezoidal profile

carrying the same load as above with a working stress of- 100

pounds per square inch on top and base, requires a section area

of 97.8 square feet at the base.

Prob. 28. A vertical steel rod of a mine pump which is to carry a

load of 40 000 pounds at its lower end, is required to have no stress

greater than 6 000 pounds per square inch, its length being 185 feet.

Compute its section area if it is of uniform size. Compute the section

area at the upper end if it could be made of uniform strength.

Art. 29. Eccentric Loads

In all the discussions of the preceding articles the resultant

of the tensile or compressive load on a bar has been supposed

to coincide in direction with the axis of the bar and the unit-

stress produced by it to be uniformly distributed over each sec-

tion area (Art. 1). This is the common case of simple axial

stress, but there are also cases where the load is 'eccentric', that

is, it does not coincide with the axis; the effect of this is to cause

the unit-stress to be greater on one side of the section than on

the other. If P is the load on a bar and a is its section area,

then for axial loads P/a is the actual uniform unit-stress; for

eccentric loads P/a is a mean or average value, some of the unit-

stresses being greater and others being less than P/a.

Fig. 29fl shows part of a rectangular bar where the eccentric

tensile load P is applied at the distance p from the axis of the
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bar and in the middle of the width of the section, and Fig. 296

shows the same bar under compression. At any section mn
the resisting imit-stresses act in the opposite direction to P and

hold it in equilibrium. The resultant of these unit-stresses must

equal the load P in order that there may be no motion in the

direction of the length of the bar, and it must be in the same line

of action as P in order that there may be no motion of rotation.

From these two conditions of equilibrium (Elements of Mechanics,

Art. 6) the values of the greatest unit-stress S\ and the least

unit-stress 52 can be found when the law of variation of the

stresses across the section is known.

Fig. 29a Fig. 296

It has been ascertained by experiment that, when the elastic

limit of the material is not exceeded the stresses increase across

the section at a uniform rate from 52 to Si, and hence the law

of variation is that of a straight line. From this law, the mean

unit-stress is ^(5i+52) and the total stress on the section area

a is ^{Si+Sz)^; accordingly the first condition of equilibrium

is expressed by \{Si+S2)a=P- To express the second con-

dition, it may be noted that the resultant load P must be oppo-

site to the center of gravity of the trapezoid which represents

the unit-stresses; or conversely, the center of gravity of this

trapezoid must be at the distance p above the axis of the bar

in Fig. 29a and at the distance p below the axis in Fig. 296. Let d

be the width of the rectangular section; then it is known that

the center of gravity of the trapezoid having the two parallel

sides 5i and 52 and the altitude d is given by ^ =

IdiSi -52)/(5i +52). Solving these two equations there results,

from which the unit-stresses may be computed for any given value

of the eccentricity p. When p=o, both 5i and 52 are equal

to P/>a and the stress is uniformly distributed.
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The following figures show the distribution of the unit-stresses

for several cases of compression, the cross-section of each prism

being rectangular and having the width d. In Fig. 29c the load

is axial or p=o and Si=S2=P/a. , In Fig. 29<i the distance

p is less than ^d and the values of 5i and ^2 are given by the

above formulas. In Fig. 29e the distance p is ^d and the formulas

give Si=2P/a and 52=0, so that the imit-stress on the side of

the section nearest P is double that of uniform distribution^ while

there is no stress on the other side. In Fig. 29/ the distance p
is greater than ^d, so that Si is greater than 2P/a, while 52 is

negative, that is, 52 is tension instead of compression. As a

numerical example, let a masonry pier having a base 10X30 feet,

as in Fig. 29^, carry a load of i 200 000 pounds on its top at a

distance of 6 feet from the middle. Here P/a-i 200000/300 =

4000 pounds per square foot =28 pounds per square inch, and

^/tf =6/30=0.2. Accordingly the grea:test compressive stress

due to this eccentric load is 5i =28(1 -[-1.2) =62 pounds per

square inch, while the stress on the other side is 52 = 28(1 — 1.2) =

about 6 pounds per square inch tensiop.

Si
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The above investigation considers only the stresses caused by

the eccentric load and takes no account of those due to the weight

of the bar or prism itself. If this weight be W the uniform

unit-stress due to it is W/a, and this may be added to those caused

by the eccentric load P. For instance, let the pier in the above

example weigh 1500000 pounds; then W/a = 3S pounds per

square inch, so that the greatest and least compressive stresses

due to both P and W are 5i=35-f62=97 and 52=35—6=29
pounds per square inch.

When the load on a rectangular prism has no eccentricity,

the stress on each section is uniformly distributed and hetice all
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parts of the prism suffer the same change of length. For an

eccentric load, the stresses vary throughout the section, and

hence the changes in length are not uniform; thus in Fig. 29e

the left-hand side shortens the amount Si/E for every unit of

length (Art. 10), while the right-hand side suffers no change of

length; again in Fig. 29/ the left-hand side shortens but the

right-hand side elongates. The result of these unequal changes

of length is to cause the prism or bar to bend laterally, and this

lateral deflection is discussed in Arts. 86-87, where also formulas

for cross-sections of any shape are deduced.

Prob. 29a. A rectangular wooden block is 6Xi6 inches in section

area and i8 inches high. It carries two loads applied on the top at

the middle of the width of the cross-section, Pi being 2 inches from

the center, while P2 is 3 inches from the center but on the side oppo-

site P\. Compute the ratio of Pi to P2 so that the unit-stress may be

uniform over the base.

Art. 30. Water and Steam Pipes.

The pressure of water or steam in a pipe is pxerted in every

direction as shown in the transverse section of Fig. 30ff; this

tends to tear the pipe apart longi-

tudinally and it is resisted by the

tensile stresses of the material.

Let R be the pressure per unit of

area which is exerted by the water

or steam, d the diameter of the pipe, ^'S- ^^'^ ^^S' ^°*

and / its length. Then the force which tends to cause longitudinal

rupture is Id . R; this follows from the principle of hydrostatics

that the pressure of a fluid or gas in any direction is equal to the

pressure on a plane normal to that direction, or it may be shown

by imagining the pipe to be filled with a solid' substance on one

side of the diameter, as in Fig. 306, which receives the pressure R

on each unit of the area Id. Let t be the thickness of the pipe

and 5 the resisting tensile unit-stress; when <. is small compared

with d the tensile stress may be regarded as uniformly distributed

and then the total resisting stress is 2U . S. Since the resisting



76 Cases of Simple Stress Chap, iv

stress must equal the acting pressure, it follows that,

2tS=dR or S/R=d/2t (30)

which is the common formula for pipes under internal pressure.

The unit-pressure R for water may be computed from a given

head h by finding the weight of a column of water of that height

and one square unit in section. Or, if h be given in feet, the

unit-pressure in pounds per square inch may be computed from

i?= 0.434^ (Treatise on Hydraulics, Art. 11).

Pipes are made of cast iron, wrought iron, and steel. Cast

iron is used for water pipes up to 36 inches in diameter, and

steel is generally used for steam pipes. Large water pipes are

made of steel plates riveted together, but the discussion of these

is reserved for another article. A water pipe subject to the shock

of water ram requires a high factor of safety, and in a steam

pipe the factors should also be high owing to the shocks liable

to occur from the condensation and expansion of the steam.

The above formula shows that the thicknesses of thin pipes of

the same material under the same internal pressure should increase

directly as their diameters. Thick pipes are treated in Art. 150.

For example, let it be required to find the factor of safety

of a cast-iron water pipe of 12 inches diameter and | inches

thickness under a head of 300 feet. Here R is 0.434X300 = 130.2

pounds per square inch. Then the unit-stress is

5=12X130.2/(2X1)= ! 250 pounds per square inch

and hence the factor of safety of the cast iron under this tensile

stress is 20000/1 250= about 16, which indicates ample security

imder ordinary conditions.

AgaiUj let it be required to find the proper thickness for a

wrought-iron steam pipe of 18 inches diameter to resist a pres-

sure of 120 pounds per square inch. With a factor of safety

of 10 the working unit-stress 5 is about 5 000 pounds per square

inch. Then from the formula the required thickness is / =

(120/s 000) X 9 =0.22 inches. In order safely to resist the shocks

liable to occur in handling the pipes, the thickness is often made

greater than the above formula requires.
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Prob. 30a. What should be the thickness of a cast-iron water pipe

of 18 inches diameter under a head of 300 feet, the factor of safety

being taken as 15?

Prob. 306. A wrought-iron pipe is 3 inches in internal diameter and
weighs 8 pounds per linear foot. Compute its thickness, and the pres-

sure it can carry with a factor of safety of 10.

Art. 31. Thin Cylinders and Spheres

A cylinder subject to the interior pressure of water or steam

tends to fail longitudinally exactly like a pipe. The head of

the cylinder, however, undergoes a pressure which tends to

separate it from the walls. If d is the diameter of the cylinder

and R the internal pressure per square unit, the total pressure

on the head is \Ttd^ . R. If 5 is the working unit-stress and t

the thickness of the cylinder, the resistance to the pressure is

approximately ndt . S when t is so small that 5 may be regarded

as uniformly distributed. Since the resisting stress must equal

the acting pressure,

ndt.S=^d?.R or S/R=d/'^t

By comparing this with the formula of the last article it is seen

that the resistance of a pipe to transverse rupture is double the

resistance to longitudinal rupture.

A thin sphere subject to interior pressure tends to rupture

around a great circle, and it is easy to see that the conditions

are exactly the same as for the transverse rupture of a cylinder,

or that 4tS=dR. For thick spheres and cylinders the formulas

of this and the last article are only approximate; a full discus-

sion of these will be found in Arts. 150, 152, 163.

A cylinder under exterior pressure is theoretically in a simi-

lar condition to one under interior pressure as long as it remains

a true circle in cross-section. A uniform interior pressure tends

to preserve and maintain the circular form of the cylindrical

annulus, but an exterior pressure tends at once to increase the

slightest variation from the circle and render it elliptical. The

distortion when once begun rapidly increases, and failure occurs

by the collapsing of the tube rather than by the crushing of the
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material. The flues of a steam boiler are the most common

instance of cylinders subjected to exterior pressure. In the

absence of a rational method of investigating such cases recourse

has been had to experiment. Tubes of various diameters, lengths,

and thicknesses have been subjected to exterior pressure until

they collapse and the results have been coriipared and- discussed.

The following, for instance, are the results of three experiments

by Fairbaim on wrought-iron tubes, the collapsing pressure

being in pounds per square inch:

Length ,
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Art. 32. Shrinkage of Hoops

Hoops and tires are frequently turned with the interior diam-

eter slightly less than that of the wheels or cylinders Upon which

they are to be placed. A hoop is expanded by heat and placed

in position, and in cooling it shrinks and is held firmly upon

the cylinder by the radial pressure caused by the shrinkage. The

effect of this radial pressure is to cause tension in the hoop, and

compression throughout the mass that it encircles.

When the hoop is thin compared to the diameter of the cylinder

upon which it is shrunk, the entire deformation due to the shrink-

age may be practically regarded as confined to the hoop. The

tangential unit-stress in the hoop will then be due only to the

increase in length of the circumference, and this will be pro-

portional to the increase in its diameter. If e is the unit-elonga-

tion of the hoop and E the modulus of elasticity of the material,

then by (9) the tensile imit-stress due to the elongation is 5 = sE.

Let d be the diameter of the cylinder upon which the hoop

is to be shrtmk, and d^ be the interior diameter to which the

hoop is turned. Supposing that d is imchanged by the shrink-

age, di will be increased to d, and the unit-elongation of the

inner circumference of the hoop will be £ = {d—di)/di; since the

hoop is thin, this is practically the unit-elongation for all parts

of the hoop. Acdordingly,
d— di «

S=eE or S=^~E
di

is the tensile imit-stress in the hoop due to shrinkage.

A common rule for the case of steel hoop shrinkage is to

make d-di equal to lind, that is the hoop is turned so that its

interior diameter is rAnrth less than the diameter of the cylinder;

then di=\U}-d, and s = ((i-<^i)/<^i =t3-V?> which is practicaUy

the same as ttdtt- The tangential tensile unit-stress in the

hoop then is 5=30000000/1500 = 20000 pounds per square

inch.

The radial unit-stress acting between the cylinder and the

hoop is from formula (30) readily found to be R = 2tS/di, and
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hence its value depends upon the diameter of the cylinder and

the thickness of the hoop. For a locomotive driving wheel

having <f=6o inches, <=f inches, and 5 = 20000 pounds per

square inch, the radial unit-pressure R between the tire and wheel

is 500 pounds per square inch.

The above discussion gives values of 5 somewhat too high,

because the radial pressure acting between the hoop and the

cylinder produces some decrease in the diameter of the latter.

For thick' hoops upon hollow cylinders, such as those of large

gims, the above method -is not sufficiently accurate, and a more

exact one is given in Art. 152.

Prob. 32. Upon a cylinder 18 inches in diameter a wrought-iron

hoop 2 inches thick is to be placed. The hoop is turned to an interior

diameter of 17.98 inches and shrunk on. Compute the tensile unit-

stress in the hoop.

Art. 33. Investigation of Riveted Joints

When two overlapping plates are fastened together with one

row of rivets, as in Fig. 33a, the joint is called a lap joint with

single riveting; when two rows are used, as in Fig. 336, it is

said to be a lap joint with double riveting. When tension is

transmitted through such plates, its first effect is to bring a, side-

wise compression on the rivet, and this in turn brings a shear

on the rivet which tends to cut it off in the plane of the surfaces

of junction of the plate. The exact manner in which the side-

wise compression acts upon the cylindrical surface of the rivet

is not known, but it is usually supposed that it causes a com-

pressive stress which is imiformly distributed, over the projec-

tion of that surface upon a plane through the axis of the rivet.

For a lap joint with single riveting, as in Fig. 33a, let P be

the tensile force which is transmitted from one plate to another

by means of a single rivet, t the thickness of the plate, and p
the pitch of the rivets. Let St be the tensile unit-stress which

occurs in the section of the plate between two rivets, and 5^ and

Sg be the unit-stresses of compression and shear upon a rivet.

Then the equations between the stresses and the force P are.
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for tension on plate, t(^— d)St=P
for compression on rivet, tdSc=P
for shear on rivet, ^d^ .Se=P

From these equations the unit-stresses may be computed when
the other quantities are known, and by" comparing them with

the proper allowable unit-stresses (Art. 7) the degree of security

of the joint is estimated.

mm*^^^^^^ m^̂ —

>

Fig. 33a Fig. 336

For a lap joint with double riveting, the plates have a wider

lap, and the two rows of rivets are staggered, as in Fig. 33&.

Let P be th^ tension which is exerted over the width equivalent

to the pitch p, this being the distarice between the centers of

two rivets in one row. Then P is transferred from one plate

to another through two rivets, and the three formiilas are,

t(J>-d)St=P 2td.Sc=P 2.^d^.S,=P

from which the tmit-stresses due to the tension P may be

computed and the security of the joint be investigated. This

joint is usually a stronger one than that with single riveting, if

proper values are assigned to p and d.

The investigation of a given riveted joint consists in deter-

mining the values of St, 5g, and Sc from the above equations

and then computing the factors of safety (Art. 7). For example

take a lap joint with double riveting where P=8ooo pounds,

p^2\ inches, J=|- inches, and /=| inches. Then the tensile

stress on the plate between two rivets is,

St='P/t{p—d)= 6 560 pounds per square inch,^
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while the sidewise compressive stress on the rivet is,

Sc=P/2td=6 i<x> pounds per square inch,

and the shearing stress on the rivet is,

5i=P/i7r(^^=6 650 pounds per square inch.

Now, if these plates and rivets be of structural steel having an

ultimate tensile and compressive strength of 55 000 poimds per

square inch and an ultimate shearing strength of 45 000 pounds

per square inch, the factors of safety are 8.4 for the plate in ten-

sion, 9.0 for the rivet in compression, and 6.8 for the rivet in

shear.

The 'efficiency ' of a joint is defined as the ratio of its high-

est allowable stress to the highest allowable stress of the unriveted

plate. For any riveted joint three efficiencies may be computed

by dividing the three values of F hy pt . St, which is the allow-

able stress on the unriveted plate, and the smallest of these is

the efficiency of the joint. For example, let 5^=5, = 55000,

and 5^=45000 poimds per square inch, and let p = 2^, d=l,

and /=! inches for a lap joint with double riveting. Then for

the plate in tension the efficiency is {p—d)tSt/ptSt = {p—d)/p =

0.65; for the rivet in compression the efi&ciency is 2tdSc/ptSt =

2dSc/pSt='0.'jo; and for the rivet in shear the efficiency is

^Tzd^Ss/ptSt=o.^2. The efl&ciency of this joint is therefore 0.52,

that is, its strength is 52 percent of that of an unriveted plate.

In a properly designed joint all parts are of equal strength and

the three efficiencies are equal.

A butt joint is one in which there is no overlapping of the

main plates, but cover plates are used. Fig. 33c shows a case

/—

X

/—>. where there are two cover

M ^^M ^^^ plates and a single row of

V y
[ ^—y rivets on each side of the

^^' '^

joint. When tension is ap-

plied to the two main plates, it first produces compression on

the rivets and this in turn brings the rivets into shear. This

shear comes on two cross-sections of each rivet and transfers

one-half of the applied tension into each cover plate. Accord-

ingly the thickness of a cover plate should be one-half of that
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of the main plate. Let the notation be the same as before ; then,

P=t{p-d)St P=tdSo P=2.\Kd'^ .S,

are the three formulas for the cases of tension, compression, and

shear. Here the expressions for tension and compression are

the same as those for a lap joint with single riveting, but that for

shearing is different because the total stress is divided between

two cross-sections of a rivet.

Butt joints having two cover plates, and two rows of rivets

on each side, are also Used. For this case it is easy to see that

the three formulas are,

- t(f-d)St=P 2.td.^c=P 4-iT^<PSs=P

since the force P brings compression upon two rivets and shear

upon four rivet sections. Here, as always, i is the thickness of

the main plates and p is the pitch of the rivets in one row; the

two rows are 'staggered ', as shown in Fig. 33&, that is, the rivets

of one row are opposite the middle of the pitch of the other row.

Prob. 33a. A boiler 36 inches in diameter carries a steam pressure

of 120 pounds per square inch. Its longitudinal lap joints have a sin-

gle row of rivets which are spaced with i-| inches pitch. Compute the

tension P which brings shear upon one rivet.

Prob. 33b. The plates of this boiler are f inches thick and the rivets

are \^ inches in diameter. Compute the unit-stresses upon the plates

and the rivets. What is the efficiency of the joint, and what steam

pressure will cause the boiler to rupture ?

Art. 34. Design of Riveted Joints

The design of a riveted joint Consists in giving such values

to the plate thickness i, the diameter of the rivets d, and the

pitch of the rivets p, that all parts may be of the same strength,

and that, the working unit-stresses may be such that the proper

degree of security is obtained (Art. 7). For example, taking a

double-riveted lap joint of structural steel, let it be required to

determine t, d,' axxd p so that St=g 000, Sc = 12 000, and Ss =

7 500 pounds per square inch when the tension P which comes

on one rivet is 8 000 pounds. The third formula for this case

(i\rt. 33) gives the value of d, then the second gives the value
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of t, and finally the first gives the value of p. Thus d^ = 2P/KSa,

whence £? =0.825 inches, i=P/2rf5c =0.404 inches, and p =

d+P/iSt=s-°^5 inches.

While the above results satisfy the given conditions, it is

not practicable to use the exact values, because plates and rivets

of these dimensions could not be found in the market and would

have to be specially made. The nearest approach to market

sizes would probably be i=| inches and d=i^ inches, which

give p=^.iS, or say 3xV inches. Using these dimensions, the

values of St, Sc, and 5, are found to be 9 000, 13 100, and 7 700

pounds per square inch, which dififer but little from the speci-

fied working unit-stresses.

Another method of designing is to establish three expressions

for the efficiency, and then give to t, d, and p such values as

will render them equal, and at the same time carry the given

tension. Let a denote the number of rivets in the width p which

transmit the tension P, and let ^ denote the number of rivet

sections in the same space over which the shear is distributed.

Then from the definition of efi&ciency in the last article,

for tension of the plate, efficiency= (^— (^/^

for compression of the rivet, efficiency= a . dSjpSt
for shear of the rivet, efficiency=/? . ^cPSJptSt'.

Equating now the second of these efficiencies to the third, the

value of c? in terms of t is fovmd; equating the first and second

aiid eliminating d, the value of ^ in terms of t is obtained;

accordingly,

TtpSa npS, \ Stl

from which the diameter and pitch of the rivets can be com-

puted when t is assumed. The efficiency of the joint now is

{p-d)/p or aSc/{St+ocS,).

Using for steel plates and rivets the working stresses 5^ =9 000,

5c = 12 000, and 5s = 7 500 pounds per square inch, the above

formulas give for a riveted lap joint with single riveting, where

a = I and ^ = 1, the proportions,

d=2.oAt p=4.i^t efficiency=o.57'
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so that if the thickness of the plate be given, and the diameter

and pitch of the rivets be made according to these rules, this

riveted joint has about 57 percent of the strength of the unholed

plate. For a lap joint with double riveting, where a = 2 and
/?=2, the formulas become

d=2.04t p^y.^St efficiency=o.73

This investigation shows clearly the advantage of double over

single riveting, and by adding a third row the efficiency will be

raised to about 80 percent. In both cases the area i(p—d) must

be sufficient to carry the tension P under the unit-stress St.

The application of the above formulas to butt joints makes
the diameter of the rivet equal to the thickness of the plate>

and makes the pitch much smaller than the above values for

lap joints. These proportions are difficult to apply in practice^

on account of the danger of injuring the metal in punching the-

holes. For this reason riveted joints are often made in which

the strengths of the different parts are not equal. Many other

reasons, such as cost of material and facility of workmanship,

influence also the design of a joint. The old rules which are

still sometimes used for determining the pitch in butt joints

are expressed by,

p=d-\—

-

and p—d-\—

—

2t t

the first being for single and the second for double riveting.

These are deduced by making the strength of the joint equal

in tension and shear, and taking Ss=St, thus neglecting entirely

the influence of the compression on the rivet.

The term 'bearing compression ' is in common use for the

sidewise compression brought upon a rivet by the tension in the

plate. The assumption regarding its distribution is a rough

approximate one and rivets are more apt to fail by shearing than

by bearing compression. Hence it is customary to allow a higher

working unit-stress for the bearing compression pf a rivet than

for the tension of a plate, notwithstanding that rivet steel is gen^

erally somewhat lower in strength than plate steel (Art. 25).

Cooper's bridge specifications give 9000 pounds per square
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inch as the highest allowable stress for rivets in shear and 15 000

pounds per square inch for rivets in bearing compression.

It may be required to arrange a joint so as to secure either

strength or tightness. For a bridge, strength is mainly needed;

for a gasholder, tightness is the principal requisite; while for a

boiler both these qualities are desirable. .In general a tight

joint is secured by using small rivets with a small pitch. The

distance between the rows of rivets is determined by practical

considerations. The lap of the plates should be sufficient so

that the rivets may not tear or shear the plate. If the dis-

tance from the center of the hole to the edge of the plate be /,

there are two areas tl along which shearing tends to occur, and

2^/58 must be equal to or greater than the tension P for a single-

riveted joint, or I must be equal to or greater than P/2tSi,.

In the preceding discussion of the stresses on the rivet, it

has been supposed that the compressive and shearing stresses

act independently of each other. This assumption, is the one

commonly made in practice, but the investigations in Arts. 105

and 141 show that these stresses should really be combined in

order to obtain the actual maximum stresses of compression and

shear. The usual method of practice above explained in which

liberal factors of safety are used is, however, generally regarded

as one giving ample security.

Prob. 34a. A butt joint is like Fig. 33c, except that it has only one

cover plate. What should be the thickness of this cover plate, and how
does the joint differ from a single-riveted lap joint ?

Prob. 346. A lap joint with double riveting is to be formed of plates

^ inch thick with rivets \ inches diameter. Find the pitch so that

the strength of the plate shall equal the shearing strength of the rivets,

and compute the efficiency of the structural-steel joint.
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Chapter V '

GENERAL THEORY OF BEAMS

Art. 35. Definitions

'Flexural Stress ' occurs in a bar when it is in a horizontal

position upon one or more supports. The weight of the bar

and its loads cause it to bend, and induce in it stresses and defor-

mations of a complex nature which, as will be seen later, may
be resolved into those of tension, compression, and shear. Such

a bar is called a 'Beam '.

A ' Simple Beam ' is a bar resting upon supports near its

ends. A ' Cantilever Beam ' rests on one support at its middle,

or the portion of any beam projecting out of a wall or beyond

a support may be called a cantilever beam. A 'Continuous

Beam ' is a bar resting upon more than two supports. , In this

chapter the word beam, when used without qualification, includes

all kinds, whatever be the number of the supports, or whether

the ends be free, supported, or fixed. Fig. 35a shows a simple

beam. Fig. 35& shows a cantilever beam, and Fig. 35c shows a

continuous beam of two equal spans.

k J

Fig. 35o Fig. 356 Fig. 35c

The 'Elastic Curve ' is the curve formed by a beam as it.

deflects downward imder the action of its own weight and of

the loads upon it. Experience teaches, that the amount of this

deflection and curvature is very small. A' beam is said to be

'fixed' at one end when it is so arranged that the tangent to

the elastic curve at that end always remains horizontal; this

may be done in practice by firmly building one end into a wall.

A beam fixed at one end and free at the other end is a canti-

lever beam.

The loads on beams are either uniform or concentrated. A
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'uniform load' embraces the weight of the beam itself and any

load evenly spread over it. Uniform loads are estimated by

their intensity per imit of length of the beam, and usually in

pounds per linear foot. The uniform load per linear unit is

designated by w, then wx will represent the load over any dis-

tance x; if / is the length of the beam, the total uniform load

is wl, which may be represented hy W. A ' Concentrated Load

'

is a single applied weight and this is designated by P; a moving

concentrated load is usually applied by a rolling wheel.

In this chapter the fundamental principles applicable to all

kinds of beams will be set forth. Unless otherwise stated, a

beam will be regarded as of uniform cross-section throughout

its entire length, and in computing its weight the rules of Art. 17

will be of service. For example, the weight of a wooden beam

6x8 inches in section area and lo feet long is 6x8X3^XTf =

133 pounds; the weight of a steel beam of the same size is

6x8X3^X10X1.02 = 1632 pounds.

Prob. 35a. Find the diameter of a round steel bar which weighs 60

pounds, its length being 5 feet.

Prob. 35&. A round steel bar of 2^ inches diameter and 4 feet length

weighs 48 pounds. What is the diameter of a cast-iron bar which has

the same weight and length ?

Art. 36. Reactions of Supports

When a beam is laid upon supports its weight and the weight

of its load are bome by the support which exert 'reactions
'

upward against the beam. In fact, the beam is a body in equilib-

rium under the action of a system of forces which consists of

the downward loads and the upward reactions. The loads are

usually given in intensity and position, and it is required to find

the reactions. This is effected by the application of the funda-

mental conditions of static equilibrium which, for a system of

vertical forces in one plane, are

Algebraic sum of all vertical forces=0
Algebraic sum of moments of all forces=0

The first of these conditions shows that the sum of all the loads
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on the beam is equal to the sum of the reactions. Hence if there

is but one support, this condition gives at once the reaction.

For two supports it is necessary to use the second condition.

The axis 'of moments may be taken at any point in the plane,

but it is more convenient to take it at one of the supports. For

example, consider a single concentrated load P situated at 4 feet

from the left end of a simple beam whose span is 13 feet. The

equation of moments, with the axis at the left support, is

i3i?2—4^=0, from which R2=-^^P. Again, the equation of

moments, with the axis at the right support, is i3i?i—9P=o,

from which Ri=^^P. As a check it may be observed that

Ri+R2=P.

For a uniform load over a simple beam it is evident, without

applying the conditions of equilibrium, that each reaction is

one-half the load. For a uniform load over the cantilever beam

of Fig. 356 it is plain that the vertical reaction at the wall is

equal to the weight of the load.

\^—B--
60 ISOj

Fig. 36o Fig. 366

The reactions due to both uniform and concentrated loads

on a simple beam may be obtained by adding together the reac-

tions due to the imiform load and each concentrated load, or

they may be computed in one operation. As an example of

the latter method let Fig. 366 represent a simple beam 12 feet

in length between the supports and weighing 35 pounds per

linear foot, its total weight being 420 pounds. Let there be

three concentrated loads of 300,. 60, and 150 pounds placed at 3,

5, and 8 feet respectively from the left support. To find the

right reaction R2 the axis of moments is taken at the left sup-

port, and the weight of the beam regarded as concentrated at

its middle; then the equation of moments is,

i?2Xi2=42oX6+30oX3+ 6oXS-fi5oX8
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from which J22=4io pounds. In like manner to find Ri, the

axis of moments is taken at the right support, and

i?iX 12=420X6+300X9+60X7+ 150X4

from which i?i=52o pounds. As a check the sum of Ri and

i?2 is found to be 930 pounds, which is the same as the weight of

the beam and the three loads.

When there are more than two supports, the problem of find-

ing the reactions from the principles of statics becomes inde-

terminate, since two conditions of equilibrium are only sufficient

to determine two unknown quantities. By introducing, how-

ever, the elastic properties of the material, the reactions of con-

tinuous beams may be deduced, as will be explained in a follow-

ing chapter. In most cases of the discussion of a beam, the

determination of the reactions is the first step.

Prob. 36a. A simple beam weighing 30 pounds per linear foot is

18 feet long, and it carries two concentrated loads of 350 and 745

pounds at distances of 7^ and 9 feet from the left end. Compute the

reactions due to the total load.

Prob. 36b. When a single load P is on a simple beam of span I at

a distance xl from the left support, show that the reactions are

Ri=P(i-k) and R2=Pk.

Art. 37. The Vertical Shear

The failure of a beam sometimes occurs by shearing in a

vertical section as shown in Fig. 37a for a simple beam and in

Fig. 37b for a cantilever beam. This shearing is produced by

two equal and parallel forces acting in opposite directions on

the left and right of the section. In the second diagram there

acts on the left of the section a downward force equal to the

sum of all the loads on the left, and on the right of the section

an equal force acts upward. In the first diagram there acts on

the left of the section an upward force which is equal to the

reaction minus the weight of the beam between the support

and the section. That such forces actually exist will be readily

understood by. considering a numerical case. Thus, for Fig. 37a,

let the total weight of the beam and loads between the supports
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be I 200 pounds, the weight between the support and the sec-

tion mn be 50 pounds, and each reaction be 600 pounds; on

the left of the section mn the upward vertical force is 600— 50 =

+ 550 pounds, and on the right of the section the upward ver-

tical force is —1150+600 = —550 pounds; here the sign +
indicates that the former force acts upward and the sign — indi-

cates that the latter acts downward. In any case, whether the

beam be simple, cantilever, or continuous, let W indicate the

total weight upon the supports, W the weight on the left of

any section and W" the weight on the right of the section, or

W' + W'-!=W; also let R' indicate the sum of all the reactions

on the left and R" the sum of all the reactions on the right of

the section, or R' +R" =W. Then the vertical force on the

left of the section is R' —W and that on the right of the section

is R"—W"; these two quantities are equal in magnitude, but

they have opposite signs, since their sum is zero; accordingly

if one acts upward the other acts downward and they constitute

a shear (Art. 6).

U ljL 1
, i Li/

Fig. 37o Fig. 376

The 'Vertical Shear ' for a section is the name given to the

algebraic sum of all the external forces on the left of the section.

Let upward forces be considered as positive and downward

forces as negative, and let V denote the vertical shear for a given

section; then,

F= Reactions on left of section minus loads on left of section

And the value of V may be positive or negative according as

the reactions exceed or are less than the loads on the left. When

V is positive, the left-hand part of the beam tends to slide upward

with respect to the right-hand part, as in the section mn of Fig. 37a;

when V is negative, the left-hand part tends to slide downward

with respect to the right-hand part, as in the other section of

Fig. 37a. In the cantilever beam of Fig. 37&, there is no reac-

tion at the left, and hence the vertical shear at every section is

negative.
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The vertical shear varies greatly in value at different sections

of a beam. Consider first a simple beam of length I and weigh-

ing w per unit of length; each reaction is -then \wl. Pass a

plane at any distance x from the left support; then from the

definition, the vertical shear for that section is V ^\wl—wx.
Here it is seen that V has its greatest value ^wl when x=o, that

V decreases as x increases, and that V becomes o when x = ^l.

When X is greater than ^l, the value of V is negative and becomes

—^wl when x=l. The equation V = ^wl—wx is that of a

straight line in which x is the abscissa and V the ordinate, the

origin being at the left support; it may be plotted so that the

ordinate will represent the vertical shear for the corresponding

section of the beam, as shown in Fig. 37c.

^^^^^^^^^^^^^'^"^^uijim
illl ll

-r ^
\

——
[

?

^™^
i

Fig/ 37c Fig. 37d

Consider again a simple beam, as in Fig. S7d, having a span

of 12 feet with three loads of 240, 90, and 120 pounds, situated

3, 4, and 8 feet respectively from the left support. By Art. 36

the left reaction is found to be 280 and the right reaction 170

pounds. Then, for any section between the left support and

the first load the vertical shear due to the given loads is F = + 280

pounds, for a section between the first and second loads it is

F=28o— 240= +40 pounds, for a section between the second

and third loads it is F = 28o— 240—90= — 50 pounds, and for

a section between the third load and the right support it is F =

280— 240—90— 120= —170 pounds, which has the same numer-

ical value as the right reaction. By laying off ordinates upon a

horizontal line a graphical representation of the yertical shears

due to the three concentrated loads is obtained.

For any section of a simple beam distant x from the left

support, let i?i denote the left reaction, w the weight of the uni-

form load per linear unit, and IPi the sum of all the concen-

trated loads between the section and the support. Then the
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definition gives V=Ri—wx—IPi as a general expression for the

vertical shear. Thus if the beam of the last paragraph weighs

20 pounds per linear foot, the vertical shear at the left support

is 400 pounds, while at two feet from the left support it is 400—

40 = 360 pounds. The student should compute vertical shears

for other sections and draw the shear diagram.

The vertical shear for any section of a beam is a measure of

the tendency to shearing along that section. The aboye examples

show that this is greatest near the supports. It is rare that

beams actually fail in this manner, but it is often necessary to

investigate the tendency to such failure.

Prob. 37. The cantilever beam in Fig. 38a is 10 feet long and

weighs 23 pounds per linear foot, while the load P is 60 pounds and

is placed at 4 feet from the wall. Compute the vertical shears at

several sections throughout the beam, and draw a diagram to show

their distribution.

Art. 38. The Bending Moment

The usual method of failure of beams is by cross-breaking or

transverse rupture. This is caused by the external forces pro-

ducing rotation around some point in the section of failure.

Thus, in Fig. 38& let I be the length of the cantilever beam and

let m be the distance between P and the wall. Then the ten-

dency of P to cause rotation around a point in the section at

the wall is measured by its moment —Pm; if, however, the load

is at the end, its tendency to produce rotation around the same

point is measured by the moment —PL If w is the weight of

this beam per linear unit, the uniform load wl produces the

same tendency to rotation as if it were concentrated at its center

of gravity (Elements of Mechanics, Art. 13) ; hence with respect

to a section at the wall the moment of the uniform load wl

is —wlX^l.

Moments are taken as positive when they tend to cause rota-

tion in the same direction as the hands of a clock, and negative

when they tend to cause rotation in the opposite direction. When

the force is in pounds and the lever arm is in feet, the moment
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is in pounds-feet. For instance, let the beam of Fig. 38& be

lo feet long and weigh 23 pounds per linear foot, and let the

concentrated load P be 60 pounds and be placed at 6 feet from

the end. Then, the moment imder the load is —138X3 = —414

pound-feet, and that at the wall is —230X5—60X4= —1390
pound-feet.

I 1
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Fig. 38a Fig. 386

The algebraic sum of the moments of all the external forces

on the left of any section in a beajn is called the 'Bending

Moment ' for that section. These external forces consist of

upward reactions and downward loads, and hence the moment

of any reaction is positive and that of any load is negative. Let

the bending moment be designated by M; then for any section,

M = sum of moments of reactions minus sum of moments of loads

and the bending moment may be positive or negative according

as the first or second term is the greater. For the cantilever

beam, illustrated above, there is no reaction at the left end, and

hence all the bending moments are negative.

For a simple beam of length /, uniformly loaded with

w per linear unit, each reaction is ^wl. For any section dis-

tant X from the left support, the bending moment is M =

\wl . x—wx .\x, X being the lever arm of the reaction ^wl,

and \x the lever arm of the load wx. Here M=o when x=o
and also when x=l, and M has its greatest value \wP when

x = \l. The equation is that of a parabola whose graphical

representation is as given in Fig. ZSd, each ordinate show-

ing the value of M for the corresponding value of the

abscissa x. Consider next a simple beam loaded with only

the three weights Pi, P2, P3. Here M=RiX for any sec-
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tion between the left support and the first load, and M =

Rix—Pi{x—pi) for any section between the first and second

loads. Each of these expressions is the equation of a straight line,

X being the abscissa andM the ordinate, and the graphical repre-

sentation of bending moments is as shown in Fig. 38c. It is seen

that for a simple beam all the bending moments are positive.

For any given case, the bending moment at any section may

be found by using the above defiinition. The external forces

on the left of the section are taken merely for^ convenience, for

those upon the right of the section produce the same bending

"moment with reference to the section. The bending moment

in all cases is a measure of the tendency of the ejjternal forces

on either side of the section to turn around a point in that section.

If this bending moment is sufficiently large, the internal stresses

in the beam become ^o great that rupture occurs.

^̂ 4:
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shears and bending moments for several sections, and draw diagrams

to show their variation throughout the beam.

Art. 39. Internal Stresses and External Forces

The external loads and reactions on a beam maintain their

equilibrium by means of internal stresses which are generated

in it. It is required to determine the relations between the

external forces and the internal stresses; or, since the effect of

the external forces upon any section is represented by the ver-

tical shear (Art. 37)' and by the bending moment (Art. 38), the

problem is to find the relation between these quantities and the

internal stresses in that section.

-^>}"t i_i 1 m
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and sufficient conditions of statics for forces in one plane apply
(Elements of Mechanics, Art. 5), namely,

Algebraic sum of all horizontal components=o
Algebraic sum of all vertical components=o
Algebraic sum of moments of all forces=o

From these conditions can be deduced three laws concerning

the unfciown stresses in any section. Whatever be the inten-

sity and direction of these .

stresses, let each be resolved 1-

into its horizontal and verti-

cal components. The horizon-

tal components will be ap-

ii

plied at different points in the Fig. 39c

cross-section, some acting in one direction and some in the

other, or in other words, some of the horizontal stresses are ten-

sile and some compressive; by the first condition the algebraic

sum of these is zero. The vertical components will add together

and form a resultant vertical force V which, by the second con-

dition, equals the algebraic sum of the external forces on the

left of the section. Since this internal force V acts in contrary

directions upon the two parts into which the beam is supposed

to be separated, it is of the nature of a shear. Hence for any

section of any beam the following laws concerning the internal

stresses may be stated.

1. The algebraic sum of the horizontal stresses is zero; or

the sum of the horizontal tensile stresses is equal to the sum of

the horizontal compressive stresses.

2. The algebraic sum of the vertical stresses forms a re-

sultant shear which is equal to the algebraic sum of the external

vertical forces on either side of the section.

3. The algebraic sum of the moments of the internal stresses

is equal to the algebraic sum of the moments of the external

forces on either side of the section.

These three theoretical laws are the foundation of the theory

of the flexure of beams; they may be expressed in simpler form

by the help of the following definitions.
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' Resisting shear ' is the name given to the algebraic sum of

the internal vertical stresses in any section, and 'vertical shear

'

is the name for the algebraic sum of the external vertical forces

on the left of the section. 'Resisting moment ' is the name

given to the algebraic sum of the moments of the internal hori-

, zontal stresses with reference to a point in the section, and
* bending moment ' is the name for the algebraic sum of the

moments of the external forces on either side of the section with

reference to the same point. Then the three laws may be thus

expressed for any section of any beam

:

Sum of tensile stresses= Sum of compressive stresses

Resisting shear = Vertical shear
'

Resisting moment = Bending moment

The second and third of these equations furnish the funda-

mental laws for investigating beams. They state the relations

between the internal stresses in any section and the external

forces on either side of that section. For the sake of uniformity

the external forces on the left-hand side of the section will gen-

erally be used, as was done in Arts. 37 and 38.

Prob. 39. A beam 6 feet long is sustained at one end by a force of

280 pounds acting at an angle of 60 degrees with the vertical, and at

the other end by a vertical force F and a horizontal force X. Find

the values of X and Y, and the weight of the beam.

Art. 40. Neutral Surface and Axis

From the three necessary conditions of static equilibrium, as

stated in Art. 39, three important theoretical laws regarding

internal stresses were deduced. These alone, however, are not

sufficient for the full investigation of the subject, but recourse

must be had to experience and experiment. Experience teaches

that when a beam deflects, one side becomes concave and the

other convex, and it is reasonable to suppose that the horizontal

tensile stresses are on the convex side and the compressive stresses

on the concave side. By experiraents on beams this is confirmed,

and it is also found that any two parallel vertical straight lines

drawn on the beam before flexure remain straight after flexure,
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but are nearer together than before on the compressive side and

farther apart on the tensile side. Accordingly the following

experimental laws may be stated:

4. The horizontal fibers on the convex side ai;e elongated and

those on the concave side are shortened, while near the cen-

ter there is a 'neutral surface' which is unchanged in length.

5. The elongation or shortening of any fiber is directly pro-

portional to its distance from the neutral surface.

Now when the elastic limit of the material is not exceeded, the

stresses in the fibers are proportional to their changes in length

(Art. 2); therefore,

6. The horizontal stresses are directly proportional to their

distances from the neutral surface, provided all unit-stresses

are less than the elastic limit of the material.

From these laws there will now be deduced the following important

theorem regarding the position of the neutral surface:

The neutral surface passes through the centers of gravity

of the cross-sections.

To prove this let da be the area of any elementary fiber and z

its distance from the neutral surface. Let S be the unit-stress

on the horizontal fiber most remote from the neutral surface at

the distance c. Then by the sixth law,

5/c= unit-stress at the distance unity,

5 . 0/c= unit-stress at the distance z.

The total horizontal stress on the fiber at the distance z now
is da . Sz/c, and hence for the entire cross-section,

2da . Sz/c={S/c)Sda . z= algebraic sum of all horizontal stresses.

But by the first law of Art. 39 this algebraic sum is zero, and

hence the quantity Ida . z must be zero. This, however, is the

condition which makes the line of reference pass through the

center of gravity, as is plain from 1 I i

the definition of the term ' center

of gravity ' (Elements of Me-

chanics, Art. 13). Therefore the |-g-^

neutral surface of a beam passes Fig. 40

through the centers of gravity of the cross-sections.

\
I
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The 'neutral axis ' of a cross-section is the line in which the

neutral surface intersects the plane of the cross-section. On
the left of Fig. 40 is shown the neutral axis of a cross-section

and on the right a trace of the neutral surface.

When a beam is loaded so heavily that the horizontal unit-

stress in any fiber exceeds the elastic limit of the material, the

neutral surface no longer passes through the centers of gravity

of the cross-sections since the fifth law is no longer correct.

The common theory of flexure, developed in this and the follow-

ing chapters, applies therefore only to cases in which the unit-

stresses* are less than the elastic limit.

Let S be the unit-stress on the horizontal fiber at the most,

remote distance c from the neutral surface and Si be the unit-

stress on a fiber at the distance ci. Then the sixth law gives,

Si/S=Ci/c or Si/ci=S/c (40)

For example in the beam of Fig. 40 let the depth be g inches

and the neutral surface be 3J inches from the base; let the hori-

zontal unit-stress at the upper surface be 4 200 pounds per square

inch; then the horizontal unit-stress at the lower surface is

5i =5. ci/c =4 200X3.5/5.5=2 670 pounds per square inch.

Si is tension when 5 is compression, and Si is compression when

S is tension, for the stresses on opposite sides of the neutral sur-

face must be of different kinds since their algebraic sum is zero.

The sum of all the horizontal stresses above or below the

neutral axis is {S/c)lSa . z, in which Ida . z is equal to the

moment of the area of the cross-section above or below the neu-

tral axis with respect to that axis. Thus, for a beam 4 inches

wide and 6 inches deep the section area above the neutral axis

is 4X3 = 12 square inches, and its center of gravity is i| inches

from that axis, so that the value of ISa .z is 12X1^ = 18 inches^

;

if S for this case is 600 pounds per square inch, the sum of all

the stresses above the neutral axis is (600/3) X 18 = 3 600 pounds.

This result may also be obtained in another way: the section

area above the neutral axis is 12 square inches and the mean

unit-stress upon it is 300 pounds per square inch; hence the

total stress is 12X300=3 600 pounds.
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Prob. 40. Let Fig. 40 represent the section of a cast-iron beam in

which c is s inches, the thickness of the web i^ inches, the width of

the upper flange 3 inches, and its depth 2 inches. If the horizontal

unit-stress on the upper fiber is 6 700 pounds per square inch, com-

pute the total horizontal stress above the neutral axis.

Art. 41. Shear and Flexure Formulas

Consider again any beam loaded in any manner and cut at

any section by a vertical plane. The internal stresses in that

section hold in equilibrium the external reactions and loads on

the left of the section, and as shown in Art. 39, the following

fundamental equations apply to that section:

Resisting shear = Vertical shear

Resisting moment= Bending moment

The principles established in the preceding pages can now be

applied to the algebraic expression of these four quantities.

The resisting shear is the algebraic sum of all the vertical

components of the internal stresses at any section of the beam.

If a is the area of that section and S^ the shearing unit-stress,

regarded as uniform over the section area, then from Art. 6,

Resisting shear=a5.

The vertical shear for the same section of the beam being V
(Art. 37), the first of the above equations becomes,

S,a=V or S,-=Vla

which is the fundamental formula for the discussion of shearing

stresses in beams; this will hereafter generally be called the

'shear formula', and it assumes that the shear is uniformly dis-

tributed over the section area.

The resisting moment is the algebraic sum of the moments

of the internal horizontal stresses in any section with reference

to a point in that section. To find an expression for its value

let 5 be the horizontal unit-stress, tensile or compressive as the

case may be, upon the fiber most remote from the neutral axis,

and let c be the shortest distance from that fiber to said axis.

Also let z be the distance from the neutral axis to any fiber having

the elementary area ba. Then by Art. 40,
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5/c= unit-stress at distance unity

S .z/c= unit-stress at distance z

da . 5z/c= stress on fiber of area da

The moment of this fiber stress with respect to the neutral axis

of the cross-section is 8a . Sz^/c, and the algebraic sum of all

the elementary moments is the resisting moment, or

{S/c)2da . 3^= resisting moment of horizontal stresses

But the quantity Ida . z^, being the sum of the products formed by

multiplying each- elementary area by the square of its distance

from the neutral axis, is the ' moment of inertia ' of the area of the

cross-section with reference to that axis. Let this moment of

inertia be represented by /; then.

Resisting moment= (S/c)I=S . I/c

The bending moment for the same section of the beam being M
(Art. 38), the second of the above equations becomes,

S.I/c=M or S=M.c/I (41)

which is the fundamental formula for the discussion of the hori-

zontal tensile and compressive stresses in beams; this will here-

after generally be called the 'flexure formula'.

Experience and experiment teach that simple beams of uni-

form section break near the middle by the tearing or crushing

of the fibers and rarely at the supports by shearing. Hence it

is the flexure formula that is mostly employed in the practical

investigation of beams, although for short beams the shear formula

must also be used. When the beam is not of uniform section,

as is the case in plate girders, the two formulas are of equal

importance.

When a beam of given size and shape is to be discussed,

its dimensions furnish the value of the section area a, the moment

of inertia /, and the distance c from the neutral axis of the sec-

tion to the side of the beam furthest from that axis. The

quantity I/c hence depends only on the dimensions of the cross-

section and not at all upon the loads or the material of the beam;

for this reason it is called the 'section factor.' There is a

certain analogy, then, between the two fundamental formulas

for beams; from the first the value of V/Sa must equal the
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section area a, from the second the value of M/S must equal

the section factor I/c.

To detennine the shearing unit-stress in a given section of

a beam due to given loads, the vertical shear V is computed

by Art. 37 and the section area a by the rules of geometry; then

the shear formula gives Ss = V/a. To detennine the greatest

unit-stress of tension or compression in the given section, the

bending moment M is computed by Art. 38, and the quantities

c and / by the methods of Arts. 42 and 43; then the flexure

formula gives S=M . c/I. Many applications of these formulas

to various kinds of beams will be found in the following chapters.

Prob. 41. A simple beam has a section area of 20. square inches

and a span of 15 feet. Over it roll two locomotive wheels 6 feet apart

and each bringing 12 000 pounds upon the beam. Find the position

of these wheels so as to give the greatest vertical shear at a section close

to one of the supports. Compute the mean shearing unit-stress in

that section.

Art. 42. Centers or Gravity

In the flexure formula S . I/c =M, the quantity c is the short-

est distance from the remotest part of the cross-section to a hori-

zontal axis passing through the center of gravity of that section.

Whenever a cross-section is symmetric with respect to this axis,

as in all the cases of Fig. 42a, the center of gravity is evidently

at the middle of the depth; thus, if d is the depth of the section,

the value of c is ^d.

Fig. 42a

For unsjmjmetric sections the value of c is to be computed

from the definition of the center of gravity, using the principle

of moments (Elements of Mechanics, Art. 15). For example,

take the T section shown in Fig. 42&, the depth being d, the

width of the top flange b, the thickness of that flange ti, and

the thickness of the web i ; the areaofthesectionisa = <c/4-;i(6— ^).
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Taking an axis of moments at the foot of the web, the equation

of moments is

ac=tdXid+ti{b-t)(d-ih)

from which c is known. For example, let &= 5, t=^, h=^ and

d=/\. inches; then 0=4.25 square inches, and c = 2.93 inches.

The same formula holds for the section in Fig. 42c. For the

sections in Figs. 42ci and 42e, let d be the depth, bi and h the

width and thickness of the larger flange, 62 and ^2 the width

and thickness of the smaller flange, and t the thickness of the

web; then the area of the section is a=td+ti{bi—t)+t2{h—t),

and the equation of moments with respect to the bottom of ,the

lower flange is,

ac=tdXhd+h{}}i-t){d-\ti)+t2{h2-t)y.^t2

from which c is computed. Actual sections of these forms have

the comers more or less rounded, but values of c computed in

this manner are usually sufficiently precise for all practical uses.
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Fig. 426 Fig. 42c Fig. 43d Fig. 42e

The student should be prepared to readily apply the prin-

ciple of moments to the deduction of the numerical value of c

for any given cross-section. In nearly all cases the given area

may be divided into rectangles, triangles, and circular sectors,

the centers of gravity of which are known, so that the equation

for finding c is readily written from the definition of the center

of gravity. Triangular beams are never used in practice, but

it is well to note that the center of gravity of a triangle lies upon

a line parallel to its base and at a distance from that base equal

to one-third of the altitude.

Centers of gravity for sections like those of railroad rails

are determined by dividing the area into strips which are so

small that each may be regarded as a trapezoid. The areas of
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these elementary trapezoids being computed, their centers .of

gravity may be taken at the middle of their widths with sufl&cient

precision, and then the value of c is determined by the same

method as that explained above. There is also a graphical

method for locating the center of gravity of sections which is

sometimes advantageous, and this is set forth in Roofs and

Bridges, Part II, Art. 12.

Prob. 42a. If the side of a square is d, show that c=dVi when the

square is placed so that one diagonal is vertical.

Prob. 426. For a trapezoidal section of depth d, let the shorter base

be b' and the longer base be 6. Find the distance of the center of

gravity from the shorter base.

Prob. 42c. A deck beam has a section like Fig. 426, except that

the lower flange is approximately circular. Find the value of c when

the total depth is 10 inches, the width of the upper flange 5 inches,

the thickness of that flange i inch, the thickness of the web f inch, and

the diameter of the circular bulb if inches.

Art. 43. Moments or Inertia

In the flexure formula 5 . 1/c=M, the letter / denotes the

moment of inertia of the cross-section of the beam with refer-

ence to a horizontal axis passing through the center of gravity

of that section. Let da be any elementary area of the section

and z its distance from this axis; then I = Ida .z^ is the equa-

tion from which the value of / is ascertained, and this in general

is most advantageously done by the methods of the calculus.

Strictly speaking an area has no weight or inertia and therefore

no moment of inertia, but it is customary to give the name

'moment of inertia ' to the quantity Ida . z^, which is of very

frequent occurrence in aU branches of applied mechanics.

For the rectangle of breadth b and depth d in Fig. 43a, the

elementary area da may be taken as a strip of length b and width

dz, or da=b . dz. Then Ida.z^ equals J bz^dz and the value

of z in this integral is to extend between the limits +id and —^d.

This gives I=T^^bd?, which is the moment of inertia of the rect-
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angle with respect to an axis through its center of gravity and

parallel to the base.

For the triangle with base b and altitude d in Fig. 43b, the

elementary strip has the width dz and the variable length x.

Since the center of gravity is at a distance of ^d from the base,

the value of x is, from similar triangles, x = (^d—z)b/d, and

the expression 2da . z^ becomes b/d . J {^d—z)z^dz. This being

taken between the limits +id and --^d, gives the result / =

stbd^, which is the moment of inertia of the triangle with respect

to an axis through its center of gravity and parallel to the base b.

For the circle of diameter d in Fig. 43c, a similar method

may be used. The length of the elementary strip being 2X,

the relation between x and z is given by x^+z^= (^d)^. The

general expression 2da . z^ becomes / 2XZ^dz, and, replacing x

by its value in terms of z, and integrating between the limits

+ J(^and —^d, gives the result /= ^^Tud^, which is the moment of

inertia of the area of a circle with respect to an axis through

its center.

Fig. 43a Fig. 436 Fig. 43c Fig. 43d

For the circular annulus in Fig. 43d, let d be the outer and

^1 the inner diameter, then it is plain from the definition that

the moment of inertia of the annulus is that of the outer circle

diminished by that of the inner circle or I=-^^7:(d'^—di^).

Similarly for the hollow rectangle in Fig. 43e, let b and &i be

the widths and d and di the depths, the thickness of both top

and bottom being ^(d—di); then /=xV(6«i^-&i^i^). For the

/ section in Fig. 43/ where the thickness of each flange is tj and

that of the web is t, the moment of inertia / is also ^^{bd^ —bidi^)

if &i represents b—t and di represents d—2li.

The moment of inertia of a rectangle with respect to an axis

through its base is frequently needed. Fig. 4Sg shows this case,



Art. 43 Moments of Inertia 107

and da is b . dz; then j bz^dz is to be taken between the limits

d and o, which gives 7i =^bd^. This is seen to be four times

as great as the moment of inertia for a parallel axis through

the center of gravity.

By using the result of the last paragraph, the moment of

inertia of the T section in Fig. 43A with respect to an axis through

its center of gravity can easily be written. Let the distance

c and Ci be first found by Art. 42 ; let h be the thickness of the

flange and / that of the web. Then \tc^ is the moment of

inertia ,of the portion of the section below the axis, and

\bci^ ~^{b—t){ci—t{f is the moment of inertia of the portion

above the axis. The sum of these is the required moment of

inertia of the entire section.
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The moment of inertia of any section area is less for an axis

through its center of gravity than for any parallel axis. If /

is the value for the axis through the center of gravity, /i that

for any parallel axis, a the area of the section, and h the distance

between the two axes, the formula !•= I\—ah^ furnishes the-

means of finding I when /i is known. For example, take the

rectangle of breadth b and depth d where /i is known to be ^bd^

for an axis passing through one of the bases; then for a parallel

axis through the center of gravity of the rectangle, the value of I

is ^bd^— bd{^dY'=-^bd^. Similarly, the value of /i for the T sec-

tion in Fig. 426 or Fig. 43^ with respect to an axis through the

base of the web is \bd^—\{b— t){d—t{f, where d is the total

depth; this being computed, the value of I for the parallel axis

through the center of gravity is Ii—ac^.

For the beam of Fig. 43j, which is made by riveting four

angles to a web, the expression of / is the same as that for Fig. 43/.

It. is, however, customary to use tables in finding the numerical

value of I for such a section, these tables giving the moments
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of inertia of various sizes of angles with respect to axes through

their centers of gravity and parallel to the legs. For example,

let the horizontal leg of each angle in Fig. 43i be 4 inches, the

vertical leg 3 inches, and the mean thickness J inch. Then
Table 10 shows that the distance from the back of the long leg

to an axis through the center of gravity of the angle is 0.83 inches,

that its section area is 3.25 square inches and that the moment
of inertia of the section with respect to this axis is 2.42 inches*.

Foiir of these angles being used with a web f inches thick and

30 inches depth, the moment of inertia of the angle sections with

respect to the horizontal axis through the center of gravity of

the web is 4X2.42+4x3-25(15—0.83)2 = 2620.0 inches*, while

the moment of inertia of-theweb itself is tVX |X 30^ = 843
.
7 inches*,

thus giving 7=2620.0+843.7 = 3464 inches* for the moment of

inertia of the entire section with respect to an axis through its

center of gravity.

The moment of inertia of a plane area contains the product

of four linear dimensions and is hence expressed in quadratic

units; for the sake of clearness 'inches* ' will be used to designate

the unit in which / is measured. When lengths are expressed

in inches, areas are in square inches, volumes in cubic inches,

and moments of inertia in inches*- The section factor I/c is the

product of three linear dimensions and is expressed in 'inches^ ';

since it is not a volume the term cubic inches would not be

appropriate.

Prob. 43ffl. Consult a book on theoretic m.echanics and obtain a

proof of the valuable rule Ii=I+ah^.

Prob. 436. For Fig. 43^ let the upper flange be 4Xi inches, the

web be sJXi inches, and the total depth be 6 inches. Compute the

area of the section and the value of c, without using algebraic for-

mulas. Compute the moments of inertia of flange and web with re-

spect to horizontal axes through their centers of gravity. Transfer

these to the horizontal axis shown in the figure and find / for the entire

section with respect to that axis.

Art. 44. Rolled Beams and Shapes

Soon after 1830, owing to the rapid progress of railroad con-

struction, wrought iron began to come into use for railroad rails
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and bridges, and by 1850 roUed beams and angles were exten-

sively employed. The Bessemer and the open-hearth processes

of making steel, introduced in 1856 and 1863, rendered it possible

to produce ingots from which steel rails- and , beams could be

rolled, but it was not until about 1890 that steel beams began

seriously to compete with those of wrought iron. After this

date, however, the use of wrought iron for beams and shapes

rapidly declined and since 1900 medium steel has taken its place

as a structural material (Art. 25).

Table 6, at the end of this volume, gives the properties of

the most common sizes of the medium-steel I beams rolled in

the United States of America in 1905. The first column con-

tains all the depths that are rolled, but for each depth other

sizes than those given in the second, third, and fourth columns

may be obtained; for instance, for the 18-inch beam, sizes

may be ordered which weigh 65 and 60 pounds per linear foot,

the width of the flanges being intermediate between 6.26 and

•6.00 inches. The sizes marked with an asterisk are called

standard, and they are always found in the market, while the

other sizes must generally be specially ordered and hence cost

a little more per pound. The fifth column of the table contains

the moments of inertia of the sections with respect to an axis AB
drawn through the center of gravity of the section and normal

to the web, as shown in Fig. 44a; the sixth column contains

the section factor I/c, which is obtained.by dividing I by one-half

of the depth; the seventh column will be explained below. The

remaining columns refer to an axis CD through the center of

gravity of the section, and are for use in designing columns

(Art. 77). Table 13 gives the same quantities for the standard

I sections used in Germany, the weights being in kilograms per

meter of length and the linear dimensions in centimeters.

By the help of Tables 6 and 13 the flexure formula (41) is

readily applied to the discussion of I beams. For example, let a

simple span 30 feet long consist of a lo-inch I beam weighing

25 pounds per linear foot, and let it carry a uniform load of

175 pounds per linear foot. The total uniform load then is

w = 200 pounds per linear foot, and by Art. 38 the maximum
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bending moment is M=^'wP = 22 500 pound-feet = 270 000 pound-

inches. The horizontal unit-stress on the upper or lower side

of the beam at the middle of the span is now found from the

flexure formula to be 5 = If/(//c) =11 020 pounds per sq,uare

inch, this being tension on the lower side and compression on

the upper side.

Table 7 contains similar quantities for sections of bulb or

deck beams like that shown in Fig. Mb, the fifth column giving

the distances from the base of the flange to an axis AB through

the center of gravity and normal to the web; this distance sub-

tracted from the depth of the beam gives the value of c, the dis-

tance from the neutral axis to the end of the bulb or head. Bulb

beams are used only for floors where the beams are visible, but

I beams are employed in aU kinds of floors as well as in bridges

and many other engineering constructions.
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Fig. 44a Fig. 446 Fig. 44c Fig. 44(i Fig. 44E Fig. 44/

Beams formed by riveting together plates and channels,

or plates and angles, are in common use. Tees, channels, angles,

and other forms which alone are not used for beams are called

'shapes', and Tables 8, 9, and 10 give elements of T, C, and f
sections which are of value in designing such sections. Many
other sizes than those given in the tables are found in the mar-

ket or may be specially ordered, and the handbooks of the manu-

facturers contain lengthy tables of the elements of such sections.

Fig. 44c shows a tee which is occasionally used as a beam. Fig. 4Ad

the channel section, Fig. 44e an angle section with legs of equal

length, and Fig. 44/ an angle section with unequal legs. For

channels and angles the center of gravity usually falls without

the section as seen in the figures; through this point rectangular

axes are drawn as shown, and the tables give the moment of

inertia with respect to each of these axes.
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By the help of Table 9 the moment of inertia of the section

of the compound beam shown in Fig. 44^ can be readily com-

puted. For example, let each channel be lo inches deep and

weigh 15 pounds per linear foot; then from the table the moment

of inertia of the two channels with respect to the neutral axis is

2X66.9 = 133.8 inches*. Let each plate be 9X1 inches in sec-

tion ; then by Art. 43 the moment of inertia of each with respect

to a horizontal axis through its center of gravity is ^^^XgXi^ =

0.75 inches*, and the moment of inertia of the two plates with

respect to the neutral axis of the beam is 2X0.75 + 2X9.00 X5. 5^ =

546.0 inches*. Accordingly the required moment qf inertia of

the section is 7 = 133.8-1-546.0=679.8 inches*, and the section

iactor is //c= 679.8/6.0= 113.3 inches^.
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The complete theory of moment of inertia is a lengthy one

and cannot be properly given in this book, it being a topic of

pure mathematics. It should be noted, however, that the sum

of the moments of inertia of a plane area with respect to two

rectangular axes through a given point is always a constant

"whatever be the directions of those axes. Thus, for the rect-

angle in Fig. 44i, the moment of inertia with respect to a hori-

zontal axis through the center of gravity by Art. 43, is -^bd^

And that for a vertical axis through the same point is ^jdb^. If

any other rectangular axes be drawn, as in the figure, the moments

of inertia with respect to them are less than jjbd^ and greater

than ^^db^, but their sum is equal to i^bdid'^ +b^). In this case

the greatest moment of inertia for an axis through the center

•of gravity is when the axis is parallel to the short side of the

rectangle, and the least is when the axis is parallel to the long

side. Similarly the moments of inertia for the channel sections in

Table 9 are the greatest and least with respect to axes through the

center of gravity which are perpendicular and parallel to the web.
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For the angle sections in Table 10 the given moments of

inertia are with respect to axes through the center of gravity

and parallel to the legs, as shown in Figs. 44e and 44/. These

are the values usually required in designing, but it may be men-

tioned that they are not the greatest and least values. Fig. 44/

shows the approximate position of the two rectangular axes

for which the moments of inertia are greatest and least, MN
giving the greatest value and mn the least. When the legs of

the angles are equal, each of these axes is inclined to the back

of the legs at an angle of 45 degrees.

The center of gyration of a section is the point where the

entire area might be concentrated and have the same moment
of inertia as the actual distributed area. The distance from

the axis to this center is called the 'radius of gyration ' and this

is designated by r. From this definition it follows that I =ar^,

or r^=I/a. Values of the radius of gyration for rolled steel

sections with respect to axes through their centers of gravity

are given in Tables 6-10. Fig. 44^ indicates that the distance r is

always less than the distance c from the neutral axis to the

remotest fiber.

Prob. 44a. Show that the weight of the medium-steel bearas and

shapes in Tables 6-10 is 3.4 pounds per linear foot for each square inch

of cross-section, or 489.6 pounds per cubic foot.

Prob. 446. Let the section in Fig. 4Ah consist of a plate fX 24

inches and,four angles each 4X3Xi inches in size, the longer leg of

the angle 'being horizontal. Compute the moment of inertia of the

section with respect to its neutral axis.

Art. 45. Elastic Deflections

When a beam is subject to the action of loads the horizontal

fibers on one side of the neutral axis are elongated and those

on the other side are shortened (Art. 40). The beam therefore

bends and all points except those over the supports deflect below

their original position. The curve assumed by the neutral sur--

face of the beam, when the elastic limit of the material is not

exceeded, is called the 'Elastic Curve', and its general equation

will now be deduced.
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Let mn in Fig. 45a or 456 be any short length measured along

the neutral surface of the beam. Let kk' and pf be two normal
sections passing through m and n; before the bending kk' and pf
were parallel, after the bending they intersect at o, the center

of curvature. Let qcf be drawn through n parallel to kkf. Then

qp represents the elongation of the fiber kq, and q'f the shortening

of the fiber ^'g', and these changes of length are proportional

to their distances from the neutral surface. Let the change

of length qp be called e and let S be the corresponding unit-

stress on the fiber kp, and E be the modulus of elasticity of the

material. Let the length of the beam be / and the short dis-

tance mn be dl. Then, by Art. 9, the value of qp is e = {S/E)dl.

Fig. 45o Fig. 456

Now let c be the distance from qp to the neutral surface of

the beam, and let R be the radius of curvature of the elastic

curve. From the similar figures omn and pnq, it follows that

om/mn=nq/qp or ^/dl=c/e

and, inserting for e its value (S/E)dl, this becomes S/c=E/R.
But the flexure formula (41) gives S/c = M/I, where M is the

bending moment of the external forces and / is the moment of

inertia of the section area. Accordingly,

Mr=EI or R=EI/M

which gives the relation between the radius of curvature of the

elastic curve at any section and the bending moment at that

section. When there is no bending moment, r is infinity or

the curve is a straight line ; where M has its greatest value, there

R has its least value and the curvature is the sharpest.

Now the radius of curvature of any plane curve for which

the abscissa is x, the ordinate y, and the length I, is ascertained
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in works on differential calculus to be given by R=dl^/dx . 3^y.

If this value of E be equated to EI/M, there results a general

differential equation of the elastic curve which applies to the

flexure of all beams or arches in which the elastic limit of the mate-

rial is not exceeded. In discussing a beam the axis of x is taken

as horizontal and that of y as vertical. Since experience teaches

that the length of a small part of a bent beam does not mate-

rially differ from that of its horizontal projection, the length dl

may be placed equal to 8x, and,

which is the differential equation for the discussion of the elastic

deflection of beams. In this formula y is the ordinate of the

elastic curve at the point where the abscissa is x, and the rela-

tion between y and x is to be obtained by integrating the differen-

tial equation twice and determining the constants of integration;

for this purpose M is to be expressed as a function of x. Unless

otherwise stated / will be regarded as a constant, that is, the

beam is of uniform section throughout its length.

—

%

^t::^.
Fig. 45c Fig. 45d

Numerous applications of this general formula will be given

in the following chapters, and only the simple case of a canti-

lever beam under a load at the end will be here discussed. Let

Fig. 45c represent the beam which is horizontal at the wall, I

being its length. Let the origin of coordinates be taken at the

wall, values of x being positive toward the left and upward values

of y positive. The bending moment at any section distant l— x
from the left end is —P{l—x), and the differential equation (45)

for this case is,

El'^—Pl+Px

Integrating this equation, and determining the constant of in-

tegration by the condition that the value of the tangent dyjdx
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iDeComes zero when x equals zero there results,

Integrating again and determining the constant by the condi-

tion that y equals zero when x is zero, there is found,

EIy=-iPlx^+iPx^

^hich is the equation of the elastic curve. When x equals /

the value of y is the deflection of the end, which is —PP/^EI.

The equation Mr=EI shows that M and R must always have

the same sign, since EI can never be negative. When the bend-

ing moment M is positive, r is also positive and it is directed

xipward as in Fig. 45^; when M is negative, R is also negative

and it is directed downward as in Fig. 456. A positive bending

mqment hence indicates that the lower side of the beam is con-

vex or in tension, while a negative bending moment indicates

that the lower side of the beam is concave or in compression.

Prob. 450. A straight stick of wood, 2X2X18 inches, is laid on

two supports very near its ends. Compute the radius of curvature of

the elastic curve at the middle.

Prob. 456. Prove, when two equal loads on a simple beam are

equally distant from the middle, that the elastic curve of the part of

the beam between them is a circle.

Prob. 45c. Find the equation of the elastic curve for the cantilever

beam of Fig. 45^ under uniform load, taking the origin of coordinates

at the free end and letting values of x be positive toward the right.
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Chapter VI

CANTILEVER AND SIMPLE BEAMS

Art. 46. Shear and Moment Diagrams

The fundamental principles relating to beams have been

deduced in the preceding chapter and it now only remains to

apply them to special cases. The shear formula 5, . a= F and

the flexure formula S .I/c =M (Art. 41) contain all the quan-

tities needed for investigation or design, and the first step is

to obtain the values of the vertical shear V and the bending

moment M; for brevity these will hereafter be called 'shear'

and 'moment '. Arts. 37 and 38 show that V andM vary through-

out the beam, and the manner in which they vary will now be

further discussed. The maximum values of V and M will give

the greatest values of the unit-stresses Sa and S.

The method of computing the shear V and the moment M
for any given section of a simple beam is by the use of the defi-

nitions of these quantities, namely,

V— Left reaction minus loads on left of section

M=Moment of left reaction minus moment of loads on left

and these apply also to cantilever beams by making the left

reaction equal to zero, since there is no reaction at the left end.

From these definitions, values of V and M for several sections

are readily computed and graphical representations of the results

may then be made.

The following figures show shear and moment diagrams for

a cantilever beam. Fig. 46a being for a uniform load, Fig. 46&

for a concentrated load at the free end, and Fig. 46c for both

uniform and concentrated load, the upper diagram being for

the shears and the lower one for the moments. To explain

the manner of their construction, it will be sufficient to consider

only the third case. Let the beam be 15 feet long, the uniform
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load be 40 pounds per linear foot and the concentrated load be

7CX) pounds. The shear at the free end on the right of the con-

centrated load is F = — 700 pounds, at 5 feet from the left end

it is F = — 700— 5X40 = — 900 pounds, at 10 feet from the left

end it is V=— 700— 10X40=—! 100 pounds, and at the wall

it is F= —700-15X40= —I 300 pounds; these values are laid

off to scale downwards from a horizontal line and the line con-

necting, their lower ends is then drawn. The moment at the

free end is zero,' since the lever arm of the concentrated load

for this section is zero, the moment at 5 feet from the left end

is M = —700X5 — 200X2^ = —4000 pound-feet, at 10 feet from

the left end it is M = —700X10—400X5 = —9000 pound-feet,

and at the wall it is M = —700X15—600X7^= —15 000 pound-

feet; these values are laid off to scale and aline connecting their

lower ends is drawn. The diagrams thus constructed shows

clearly the distribution of the shears and moments throughout

the beam.
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The following figures show shear and moment diagrams for

a simple beam, Fig. 46d beiag for imiform load, Fig. 46e for

one concentrated load, and Fig. 46/ for both imiform and con-

centrated loads. For the last case let the beam be 18 feet long and

weigh 20 pounds per linear foot, the larger load being 360 pounds

at 6 feet from the left end and the smaller one being 90 pounds

at 12 feet from the left end. The reactions of the left and right

supports are found by Art. 36 to be 450 and 360 pounds, the

sum of which equals the total load, 810 pounds. To construct

the shear diagram a sufficient number of values of F must be

computed; thus, at the right of the left support F=-F4So, at

the left of the first load F= +450— 120 = -I- 330, at the right of

that load F = -f450— 120— 360 = — 30, at the middle of the
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span F= +450— 180—360 = —90 pounds, and so on. To con-

struct the moment diagram several values of M are computed;

thus at 3 feet from the left end ^=450X3—60X1^= +1 260,

under the first load M =450X6 — 120X3= +2 340, at the middle

of the span ^=450X9 — 180X4^-360X3= +2 160 pound-

feet, and so on. These values being laid o£E as ordinates and

lines being drawn connecting their ends, the distribution of

the shears and moments throughout the beam is graphically

represented.
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From the definitions of V and M and from the general dis-

cussions in Arts. 37 and 38, it is seen that the shears are always

represented by ordinates to straight lines which are inclined

when uniform load is considered and horizontal when concen-

trated loads are alone considered. It is also seen that the moments

are represented by ordinates to straight lines for concentrated

loads alone and by ordinates to parabolic curves for uniform

load either alone or accompanied by concentrated loads.

The above diagrams for simple beams show that the maxi-

mum moment occurs at the section where the shear passes through

zero. This is indeed a general law the truth of which will be

demonstrated in the next article. This law also applies to canti-

lever beams, for at the wall there is a reaction equal to the weight

of the beam and hence on passing beyond that section the sheat

becomes zero.

Prob. 46a. Construct shear and moment diagrams for a cantilevei

beam 10 feet long and weighing 13 pounds per linear foot, there being

a concentrated load of 75 pounds at 2 feet from the left end.

Prob. 466. Construct shear and moment diagrams for a simple

beam 20 feet long and weighing 13 pounds per linear foot, there being

a concentrated load of 240 pounds at 5 feet from the left end.
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Art. 47. Maxbium Shears and Moments

» The greatest numerical value of the shear or moment which

occurs in a beam under a given system of loads is called the

maximum value, whether it be positive or negative. These

maximum values are to be used in the shear and flexure formulas

of Art. 41 without regard to sign, for the signs + and — pre-

fixed to a shear indicate merely whether the left part of the beam

tends to slip up or down with respect to the other part (Art. 37),

while when prefixed to a moment they indicate merely whether

the upper side of the beam is concave or convex (Art. 44).

For a cantilever beam both maximum shear and moment

occur at the wall. Let w be the uniform load per linear unit,

I the length of the beam, and W the total load wl; then the max-

imum shear is V = —wl^ —W, and the maximum moment is

M= —WY.\1= —^Wl. Let P be any concentrated load at the

left end of the beam, as in Fig. 46&, then the maximum shear

is F= —P and the maximum moment is M= —PI. Or, without

regard to sign, the maximums for a cantilever beam are.

For uniform load V=W M=\Wl
For Pat the end F=P M='Pl .

'

If P is not at the free end but at the distance p from that end,

as in Fig. 47ff, the maximum shear is also P, but the maximum
moment is P{l—p).

-^^
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Fig. 47o Fig. 476

For a simple beam under uniform load alone, each reaction

is ^wl and the shear at any section distant x from the left support

is V= +^wl—wx; the maximum shears hence occur when

x=o and x=l, their values being +^W and —^W. The

moment for the section distant x from the left support is

M= +iwl . x—wx . ^x, and by the usual method of the dif-

ferential calculus this is found to be a maximum when x = ^l,
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and for this value M= +lwP = lWl. For a single load P at

the middle of a simple beam, each reaction is ^P and this is the

maximum shear; also the moment at any section between the

left support and the middle is M = +^Px, and this is a maximiim

when x=^l, as Fig. 46e shows. Hence without regard to sign,

the maximums for a simple beam are,

For uniform load V=W M=\Wl
For P at the middle V=^P M= \pi

If P is not at the middle but at the distance p from the left end,

as in Fig. 47&, the left reaction is P{l—p)/l and the right reaction

is Pp/l and these are the maximum shears; the maximum,
moment is under the load and its value is Rip or P{l—p)p/l,

which has its greatest value \Pl when p equals |/.

When one or more concentrated loads are on a simple beam,

the maximum shears are the reactions of the supports, and the

maximum moment due to these loads occurs under one of the

loads, as in Fig. 38c. The maximum moment due to both

uniform and concentrated loads also often occurs under one of

"the single loads, as seen in Fig. 46/", but it sometimes occurs

at a different section, as is the case in Prob. 46J. The section

"where the moment is a maximum is called the 'dangerous sec-

tion ', since there the greatest horizontal stress S will be found

by the use of the flexure formula ' 5 . 7/c =M (Art. 41). In

order to locate the dangerous section, the following important

law may be used.

The dangerous section is that where the shear passes through

zero. To prove this, let there be several loads on a simple beam.

Pi at the distance Pi and P2 at the distance p2 from the left

support, and so on. Let i?i be the left reaction due to these loads

and the uniform load wl. Then the bending moment for a

section distant x from the left support is,

Af-=i?i»— Jwa;2 —Pi{x—pi) —P2{x—p2) —etc.

in which only the single loads appear which are between the

left support and the section. The value of x which makes

the bending moment a maximum is obtained by equating to
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zero the derivative of M with respect to x, or

8M/dx=Ri -wx-Pi -P2-etc.= o

is the equation which gives the value of x. But Ri —WX—P1—P2
is the shear V for this section, as is clear from the definition of

vertical shear in Art. 37. Therefore the maximum moment
occurs at the section where the shear passes through zero. This

section can readily be found by computing shears for different

sections, and the construction of the shear diagram will always

be of assistance.

For example take the data of Prob. 466 where I=20 feet, ,

w = 13 pounds per linear foot, and Pi = 240 pounds at ^1 = 5 feet.

The left reaction i?i = 130+1x240=310 pounds. The shear

just at the left of P is +310— 65 = +245 and just at the right

of P it is +310— 65 — 240= +5 poimds, and hence V does not

pass through zero imder the single load. To find the exact

position of the dangerous section, let x be its distance from the

left support; then the shear is 310— 13a;— 240 and equating

this to zero, there is found x^^ 5.385 feet. The maximum moment

is 310X5.385-^X13X5.3852-240X0.385 = 1388 pound-feet.

Prob. 47a. Compute the maximum shear and moment for a canti-

lever beam 13 feet long which weighs 33 pounds per linear foot and

has a single load of 375 pounds at 3 feet from the free end.

Prob. 476. A simple beam of 12 feet span weighs 35 pounds per

linear foot and has three concentrated loads of 300, 60, and 150 pounds

at 3, 5, and 8 feet respectively from the right support. Compute the

maximum shear and moment, and draw the shear and moment

diagrams.

Art. 48. Investigation of Beams

The investigation of a beam of constant cross-sectioir usually

consists in computing the greatest horizontal unit-stress S from

the flexure formula S . I/c=M which was established in Art; 41.

For this purpose the formula may be written

S=Mc/I or S=M/{I/c) (48)

the first of which may be used when c is determined by Art. 42
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and I by Art. 43, and the second when the section factor IJc

for rolled beams is taken from tables (Art. 44). The greatest

value of 5 will be found at the dangerous section where M is a

maximum and hence the maximum moment is to be ascertained

from Art. 47. If M is computed in pound-feet, it must ba

reduced to pound-inches when / and c are expressed in terms

of inches ; then the value of S will be in pounds per square inch.

The unit-stress S will be tension or compression according'

as the remotest fiber from the neutral surface lies on the convex

or concave side of the bgam, c being the distance between that

fiber and the neutral surface. If S' is the unit-stress on the

opposite side of the beam and c' the distance from it to the neutral

surface, then by Art. 40,

S/c=S'/c' or S'=S . c'/c

When S is tension, S' is compression; when S is compression,

S' is tension. Sometimes it is necessary to compute S' as well

as 5 in order thoroughly to investigate the stability of the beam.

By comparing the values of S and 5' with the proper working

unit-stresses for the given materials (Art. 7), the degree of security

of the beam may be inferred.

As an example consider a cast-iron I beam which has a depth

of lo inches, width of flanges 6 inches, thickness of flanges and

web I inch. It is supported at its ends forming a span of 12

feet, and carries two loads, each weighing 5 000 pounds, one

being at the middle and the other at one foot from the right end.

The steps of the computation are as follows:

by geometry, 0= 20 square inches

by Art. 42, ' c= 5 inches

by Art. 43, /= 286.7 inches*

by Art. 17, w= 62.7 pounds per linear foot

by Art. 47, x= 6 feet for dangerous section

by Art. 38, max. Af=i8 630 pound-feet

Then from the flexure formula, the unit-stress is,

5=18 600X12X5/287= 3 900 pounds per square inch

which is the tensile stress on the lower side of the beam and
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the compressive stress on the upper side. The factor of safety

in compression is 90 000/ 3 900 or about 23, while that in tension

is 20 000/3 9°° or about 5 ; the degree of security for compres-

sion is ample, but that for tension is too low (Art. 7).

As a second example, consider a simple wooden beam, 3

inches wide, 4 inches deep, and 16 feet span, and let a man weigh-

ing 150 pounds stand at the middle. Here 6 = 3 inches, d =

4 inches, I = 16 feet = 192 inches, c = ^d=2 inches, I=-i^bd^ =

16 inches*, the weight of the beam 1^ = 10X12X5^/12 = 53.3

pounds, and P = i5o pounds. The dangerous section is at the

middle, and the maximum moment due to the uniform and

single loads is, from Art. 47, M =lWl+lPl = 'jo6.'j pound-feet =

8 480 pound-inches. Then the flexure formula gives 5 =

8480X2/16 = 1060 pounds per square inch, which is a satis-

factory unit-stress for the tension of timber under a steady load,

but is a little too high for compression.

A short beam heavily loaded should also be investigated for

shearing at the supports by the shear formula Sga = V (Art. 41),

but for common cases there is ample security against this stress.

For the cast-iron beam above discussed, the maximum shear

is at the right support and its value is 7 460 pounds; hence

5» = 7 460/20 = 373 pounds per square inch, so that the factor

of safety against shearing is about 48. Similarly for the timber

beam, the factor of safety against shearing may be found to be

greater than 350.

When the load upon a beam is heavy compared with its own

weight, the latter may be omitted from the computation as its

influence is small. A common rule in practice is that the weight

of the beam may be neglected whenever the moment due to

it is less than ten percent of that due to the loads on the beam;

for a concentrated load at the middle this will be the case when

^Wl is less than one-tenth of {PI, that is, when P is greater

than $W.

Prob. 48a. A piece of scantling 2 inches square and 10 feet long is

hung horizontally by a rope at each end and two students stand upon

it. Is it safe ?
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Prob. 486. A cast-iron bar one inch in diameter and two feet long

is supported at its middle and a load of 200 pounds hong upon each

end of it. Find its factor of safety.

Art. 49. Sate Loads for Beams

The proper load for a beam should not make the value of S
at the dangerous section greater than the allowable unit-stress.

This allowable unit-stress or working strength may be assumed

according to the circumstances of the case by first selecting a

suitable factor of safety from Art. 7 and dividing the ultimate

strength of the material by it, the least ultimate strength whether

tensile or compressive being taken. For any given beam the

quantities I and c are known. Then, in the flexure formula

If =5 . 1/c the maximum moment M may be expressed in terms

of the length of the beam and the unknown loads, and thus those

loads be found.

As an example, consider a wooden cantilever beam whose

length is 6 feet, breadth 2 inches, depth 3 inches, and which is

loaded uniformly with w pounds per linear foot. It is required

to find the value of w so that S may be 800 poimds per square

inch. Here c = i^ inches, /=t2-, and M = ^6x6w. Then, from

the flexure formula, 216^ = 800X54/1^X12, whence w = ii

poimds per linear foot. Since this wooden beam weighs about

2 pounds per foot, the total safe uniform load will be about

9X6 = 54 pounds.

As a second example, take a rolled steel I beam of 18 feet

span which is 10 inches deep and weighs 25 pounds per foot,

and let it be required to find what concentrated load P may
be put at the middle in order that the unit-stress at the dangerous

section shall be 15 000 pounds per square inch. From Table 6

the value of the section factor I/c is 24.4 inches^. From Art. 47

the maximum moment is M=iP X18X12 pound-inches if the

weight of the beam be disregarded. Accordingly 54P=5.7/c
or 54P = 15 000X24.4, whence P =6 780 pounds. As this is more

than five times the weight of the beam, it may be taken as the

allowable load (Art. 48). If the weight of the beam is considered,
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however, the moment is If = S4P+i2 150, and placing this

equal to 5 . Ijc there is found P = 6 560 pounds, which is only

about three percent less than the value obtained before.

As an example of an unsymmetric section, let it be required

to determine the total uniform load W for a cast-iron T beam of

14 feet span, so that the factor of safety may be 6, the depth

of the beam being 18 inches, the width of the flange 12 inches,

the thickness of the stem i inch, and the thickness of the flange

ij inches. First, from Art. 42 the value of c is found to be

12.63 inches, and that of d to be 5.37 inches. From Art. 43

the value of I is computed to be i 031 inches*. From Art. 47

the maximum moment is M.=^l= 2\W poimd-inches. Now
with a factor of safety of 6, the working imit-stress 5 on the

compressive side of the dangerous section is to be ^X 90 000=

15 000 pounds per square inch; then, inserting the values in the

flexure formula M=SI/c, the load W is found to be 58300

pounds. Again with a factor of safety of 6, the working unit-

stress S' on the tensile side of the dangerous section is to be

^X20 000 = 3 330 pounds per square inch; inserting the values

in the flexure formula M=S'I/c', the load W is foimd to be

30 400 poimds. The total imiform load on the beam should

hence not exceed 30 400 poimds, and imder this load the factor

of safety on the compressive side is nearly 12.

Prob. 49a. A simple wooden beam, 8 inches wide, 9 inches deep,

and 14 feet in span, carries two equal loads, one being 2.5 feet

on the left of the middle and the other 2.5 feet on the right. Find

these loads so that the factor of safety of the beam shall be 10.

Prob. 496. A steel railroad rail of 2 feet span carries a load P at

the middle. If its weight per yard is 56 pounds, 7=12.9 inches* and

c=2.i6 inches, find P so that the greatest horizontal unit-stress at the

dangerous section shall be 6 000 pounds per square inch.

Art. 50. Designing of Beams

When a beam is to be designed, the loads to which it is to be

subjected are known, as also is its length, and from these the

maximum bending moment may be foimd by Art. 47. The
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allowable working unit-stress 5 is assumed in , accordance with

engineering practice. Then the flexure formula (41) may be

written ,,,,/„ ,r«^I/c=M/S (50)

and the numerical value of the second member be found. The

dimensions to be chosen for the beam must be such that the

section factor I/c shall be equal to this numerical value, and

these in general are determined by trial, certain proportions

being first assumed. The selection of the proper proportions

and shapes of beams for different cases requires much judgment

and experience; but whatever forms be selected, they must in

each case be such as to satisfy the above equation.

For instance, a simple beam of structural steel, i6 feet in

span, is required to carry a rolling load of 500 pounds. Here,

by Art. 47, the value of maximum M due to the load of 500

pounds is 24 000 poimd-inches. From Art. 7 the allowable

value of 5 for a variable- load is about 10 000 poimds per square

inch; then,

//c= 24 000/10 000= 2.4 inches^

An infinite nimiber of cross-sections may be selected having

this value of I/c. If the section is round and of diameter d,

it is known that c^^d and /= -it'^d^, hence xp^d^ = 2.4, from which

d= 2.() inches. If the section is rectangular, 2 inches wide and

2I inches deep, I/c is 2.5, which is a httle too large, but it would

be well to use this size because the weight of the beam itself

has not been considered in the discussion. The dimensions

finally selected may be investigated by Art. 49 in order to deter-

mine how closely the actual unit-stress agrees with the value

assumed. Thus, the rectangular section 2X2J inches weighs

17 pounds per foot; the maximum moment is then 30 800 pound-

inches and the imit-stress is found to be 11 800 pounds per square

inch, which is 18 percent larger than the allowable value ; a larger

size than 2X2^ inches is hence required, and 2X3 inches will

be found to be larger than necessary.

When the design of a structure involves, rolled I beams, the

computation of the maximum value of M/S is made as before.
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and the corresponding number is sought in that column of

Table 6 which is headed //c. For example, take a floor which

is required to carry a uniform load of i8o pounds per square

foot including its own weight, this weight being brought upon

rolled steel beams which are of 24 feet span and spaced 4 feet

apart. It is required to find what size of beam should be used,

the allowable unit-stress 5 being specified as 16 000 poimds per

square inch. First, the total uniform load on one beam is found

to be W= 180X24X4= 17 280 poimds; second, the maximum
moment is M= JX 17 280X24X12 inch-pounds; third, from

these M/S=^8.g, which is the required value of I/c; fourth.

Table 6 shows that the 12-inch beam weighing 40 pounds per

foot has 7/c=44.8, and this is the size to be selected. The larger

table given in the handbook of the manufacturers indicates,

however, that a 12-inch beam weighing 35 pounds per foot may
be obtained by special order and that its value of I/c is 38.0;

whether this would be cheaper than the 12-inch beam weighing

40 pounds per foot can be determined only by asking quotations

of prices.

Prob. 50a. Aioo-lb. 15 -inch steel I beam of 12 feet span sustains

a unifonjily distributed load of 41 net tons. Find its factor of safety.

Also the factor of safety for a 24-foot span under the same load.

Prob. 506. A floor, which is to sustain a uniform load of 175 pounds

per square foot, is to be supported by heavy lo-inch steel I beams of

15 feet span. Find their proper distance apart from center to center,

so that the maximum fiber stress may be 12 000 pounds per square

inch.

Art. 51. Economic Sections

The two fundamental objects to be secured in designing

engineering structures are stability and economy (Art. 7). In

the case of a beam, proper security will be attained when the

horizontal unit-stress S does not exceed that allowable in good

practice, and economy will be secured by giving such propor-

tions to the cross-section that 5 is not less than the allowable

value. Both stabihty and economy will hence usually be pro-

moted by making the beam of such a size that the horizontal
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imit-stress 5 has the given allowable value at the dangerous

section when the beam is fuUy loaded. There is, however,

another important idea to be considered, namely, the shape of

the section should be such that the weight of the beam shall be

as small as possible, and this will be attained by making the

section area a as small as possible and yet keep the unit-stress S

at the given allowable value.

Since the horizontal unit-stresses in the section increase from

the neutral surface to the upper and lower sides of the beam,

it is evident that a deep section will in general require less area

to furnish a given imit-stress S than a shallow one. Thus, for a

rectangular section of breadth i and depth d, the section factor

I/c is -^^hd^/\i or \hd'^, so that the flexure formula becomes

\hd^ =MIS or a=-6M/Sd, so that for given values of M and 5,

the section area a will be rendered small by making the depth d

large. The depth, however, should not be made so great as

to give a thin section, for this would be deficient in lateral stiffness.

The proper ratio between b and d is governed by engineering prec-

edent and practice; an extreme limit is perhaps that foimd in

wooden floor joists where the depth is about six times the breadth.

Iron and steel beams may be cast or rolled with almost any

desired shape of section. Cast-iron T and I beams came into

use early in the nineteenth century; after 1840 wrought-iron

rolled beams gradually replaced those of cast-iron for railroad

use, and these in turn gave way after 1890 to rolled steel beams.

In these forms the sections have such a shape that the section

area is the least possible for a given required unit-stress S, and

this is accomplished by concentrating most of the material in

the flanges and thus having the larger part of the section area

as far from the neutral axis as practicable. The flexure formula

SI/c=M shows that this practice is correct, for, imder a given

bending moment M, the unit-stress 5 will be made small by
making I/c as large as possible, and from the definition of the

moment of inertia (Art. 43) it is clear that I will be rendered

large by placing the material as far as practicable from the neu-
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tral axis. The value of / may be expressed by ar^, where a is

the section area and r is the radius of gyration of the section,

that is, the distance from the neutral axis to the point where

all the section area might be concentrated and have the same

moment of inertia as the actual distributed ' area. Inserting

this for / in the flexure formula, it becomes ar^/c=M/S and

thus it is plain that a may be rendered small by making r'^/c

as large as possible. Since r is always less than c, the placing

of the greater part of the section in the flanges, while the web
is made thin, renders r'^/c much larger than for a rectangular

section, and thus a is made smaller and economy of material is.

secured.

For example, take the smallest 15-inch I beam in Table 6

for which a= 12.48 square inches, 7=441.7 inches* and //c=
58.9 inches^. A square section of the same strength must have

the same value of I/c, whence \d^= e,&.g and a =50.0 square

inches, which is four times the section area of the I and hence

the square beam will weigh four times as much as the I beam,

and its cost will be four times as much if the price per pound

is the same.

For wrought iron and structural steel the ultimate strengths

in tension and compression and the allowable unit-stresses

are usually the same; hence the flanges of beams of these

materials are made equal in size. Cast-iron, however, has a

much higher ultimate strength in compression than in tension

and hence the tensile flange should have the larger area. The

proper, relative proportions of the flange areas of cast-iron beams

have never been definitely established, and such beams are

now rarely used except in unimportant buildings.

The strongest rectangular beam that can be cut from a cir-

cular log will be that which has the largest section factor I/c.

If b be the breadth and d the depth, the section factor is \bd^,

and bd^ is to be made a maximum; or, if D be the diameter of

the log, b(D^— b^) is to be made a maximum. Differentiating

this and equating the derivative to zero, gives,

b=Dy/i whence d=Dy/f
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Hence & is to <i as 5 to 7 nearly. From this it is easy to show

that the way to lay off the strongest rectangular beam on the

end of a circular log is to divide the diameter

into three equal parts, from the points of divi^

sion draw perpendiculars to the circumference,

and then join the points of intersection with

the ends of the diameter, as shown in the figure.

The rectangular beam thus cut out is, of course,
*^'

not as strong as the log, and the ratio of its

strength, to that of the log is that of their values of //c, which

will be found to be about 0.65.

Prob. 51. Cast-iron beams with a 1—< section are sometimes used in

buildings. Let the thickness be uniformly one inch, the base 8 inches,

the height 6 inches, and the span 12 feet. Find the unit-stresses 5
and S' at the dangerous section under a uniform load of 5 000 pounds.

Akt. 52. Rupture of Beams

The flexure formula S.I/c=M is only true for stresses

within the elastic limit of the material, since beyond that limit

the latter part of law 6 of Art. 40 does not hold. Experience

shows that the elongations and shortenings of the horizontal

fibers are proportional to their distances from the neutral axis

when the stresses exceed the elastic limit, but these changes of

length increase in a more rapid ratio than the imit-stresses (Arts.

4r-5). Hence the imit-stresses of tension and compression in-

crease in a less rapid ratio than their distance from the neutral

axis for all fibers where the elastic limit is exceeded. Thus

Fig. 52a represents a rectangular cast-iron beam where the

tensile imit-stresses below n have exceeded the elastic limit,

while Fig. 52b shows a T section under similar conditions.

Here the algebraic sum of all the horizontal stresses is zero, but

the neutral surface does not pass through the center of gravity

of the section, because the unit-stresses are not proportional to

their distances from that surface as is required in the demon-

stration of Art. 40.

When a beam is loaded so heavily that any fiber on one or
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"both sides of the neutral surface are stressed above the elastic

limit, the flexure formula S .I/c=M is not valid, and a value

of S computed from it is not correct. It is, however, very cus-

tomary to use this formula for the rupture of beams, but in so

doing it must not be forgotten that it is so used merely for con-

venience of making comparisons and not on account of any

theoretical basis.

^-w^
Fig. S2a

—

r

Fig. 526

When a beam is ruptured under transverse loads the value

of S computed from the flexure formula is called the 'ultimate

flexural strength' of the material. If this formula were valid

beyond the elastic limit, the value of S for rupture would agree

with the least ultimate strength of the material, with tension

in the case of cast iron and with compression in the case of timber.

It is, however, always found that this computed value does not

agree with either the ultimate tensile or compressive strength

of the material but is intermediate between them. This quantity

is not a physical constant, but a figurative value computed from

an incorrect formula, and hence is mainly valuable for rough

comparative purposes. It will be designated by Sf, and the

following are its approximate average values in poimds per

square iach as determined by experiment:

"Material
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because beams of these materiak bend indefinitely under increas-

ing transverse loads, so that failure does not occur by breaking.

In fact, bars of wrought iron and soft steel may be bent double

without breaking (Arts. 24 and 25).

By the use of the above experimental values of Sf it is easy,,

with the help of the formula Sj.. I/c=M, to determine what

load will cause the rupture of a given beam, or what must be

its length or size in order that it may rupture under assigned

loads. The formula when used ia this manner is entirely em-

pirical and has no rational basis. As an example, let it be required

to find the length of a cast-iron cantilever beam, 2X2 inches in.

section, in order that it may break at the fixed end imder its.

own weight. The weight of the beam is w= 2X2X3|rXo.94=
12.53 pounds per linear foot or 1.044 pounds per Hnear inch;

the bending moment is M=JX 1.044^2=0.522^2 poimd-inches,

, where / is in inches; the value of I/c is lb(P= i.^^^ inches^.

Inserting these in the formula it becomes 0.522/2 = 35 000X1.333,

from which ^= 299 inches or about 25 feet.

The computed flexmral strength 5/ is often called the 'modulus

of rupture,' but the name above employed is a better one because

it points Out the origin and meaning of the quantity.

Prob. 52a. Compute the size of a square wooden simple beam of

8 feet span in order to break under its own weight.

Prob. 526. A cast-iron simple beam 2 inches square and 12 feet

long carries two equal loads at the quarter points. Find the loads

which will cause rupture.

Art 53. Moving Loads

The loads upon a beam consist of its own weight and the

weight of the uniform or concentrated loads which it carries.

These are called ' Dead Loads ' when they are permanent in

position and ' Live Loads ' when they may move. Beams used

in buildings are subject to the dead load of the floor and to the

live load of a crowd of people ; beams used in bridges are sub-

ject to the dead load of their own weight and to other permanent
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loads, but they receive the greatest stress from the hve* load of

moving wheels or of crowds of people. In the preceding articles

dead loads have alone been generally considered, but it has been

recognized that the maximum moment due to a single concen-

trated load on a simple beam occurs when it is placed at the

middle of the span. Other cases of concentrated loads will

now be discussed.

I iiiiiiiiii.

l^^^^rrffMMir^w! l^^nMfliMi^
Fig. 53a Fig. 536

"When two wheels which are at fixed distance apart, like two

wagon-wheels on separate axles, roll over a beam, it might be

thought that the greatest moment due to them would occur when

they are on opposite sides of the middle and equally distant

from it, as in Fig. 53a, but this is not the case. To find the

position which will give the greatest moment, let I be the span,

p the distance between the loads, and z the distance from the

left support to one of the loads, as in Fig. 53&. The maximum

moment will occur imder one of these loads, as the shear and

moment diagrams show. The left reaction is found from

Ril=P{l—p—z)+P{l— z) and the moment under the first load

then is M=XP/l){2lz—pz—2Z^). By the usual method, the

value of z which renders M a maximum is foimd to be z=^—\p,

so that the center of gravity of the two loads is as far to the right

of the middle as the dangerous section is to the left of the middle.

For example, let each load be 3 000 poxmds, their distance apart

be 5 feet, and the span be 15 feet; then 2=6.25 ^^^t, the left reac-

tion is i?i = 2 500 pounds, and the maximum bending moment

is Mi=2 500X6.25 = 15 625 pound-feet. If these loads are

placed as in Fig. 53a, the reaction is 3 000 pounds and the

moment is 3000X5.0=15000 poimd-feet.
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When two unequal loads Pi and P2 roll over a simple beam,

let z be the distance from the left support to Pi, and p be the

distance from the greater load Pi to the smaller one P2. Then,

proceeding as before, it is easy to show that the maximurn. moment

occurs under the first load when the distance between the first

load and the center of gravity of the two loads is bisected by

the middle of the span. When there are three or more con-

centrated loads, the section of maximum moment does not always

lie under the first load, but the general rule always holds good

that the distance between that section and the center of gravity

of the loads is bisected by the middle of the span.

TTTnr nVrTT^^.^^^^
^-'^'JJJiilUI

Fig. 53c Fig. 53d

When a uniform live load moves over a simple beam there

is, for any given position of the same, a section of maximum
moment, this being where the shear passes through zero (Art. 47).

Such cases, with their shear and moment diagrams, are shown

in the two figures above, but it is rarely necessary to compute

these moments, because the absolute maximum moment occurs

when the uniform live load covers the entire beam, and this is

liable to take place at any time. It is, however, of great impor-

tance that the student should be able readily to draw the shear

and moment diagrams for. any assigned position of the live load,

whether it be unifonn or partly uniform and partly concentrated.

The maximum shear due to a live load occurs when the load

is placed so as to give the greatest shear at one of the supports.

Thus the maximum shear due to the live load in Fig. 53b occurs

at one of the supports when one load is just about to pass upon

that support and its numerical value is 2P—P . p/l.

By the use of the shear formula Sga = V and the flexure formula

SI/c=M, the unit-stresses S, and S are computed for live loads.
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after the maximum values of V and M have been found, in the

same manner as if the loads were dead. Live load, however,

really produces greater stresses than dead load and hence the

computed values of 5s and 5 are increased in practice accord-

ing to the rules stated in Art. 136.

Prob. 53a. Three loads, spaced 4 feet apart, one being 3 000 and

the others i 500 pounds, roll over a simple beam of 21 feet span. Find

the position of these loads which will give the maximum moment and

compute its value.

Prob. 53&. For Fig. 53& find the position of the live load which

gives the maximum shear at the middle of the span and compute its

value. Find also the position which gives maximum shear at the

quarter point of the span and compute its value.

Art. 54. DErLECiiON of Cantilever Beams

In Art. 45 the differential equation of the elastic curve was

deduced and the general method of applying it to a particular

case was indicated. The origin of coordinates may be taken

at any point in the plane, but for a cantilever beam it is most

convenient to take it at the free end, since the algebraic work

is thus simplified. In the equation EI . d^y/8x^ =M, the bend-

ing moment M is to be expressed in terms of the abscissa x, and

by two integrations the equation between y and x is deduced.

Case I. Uniform Load.—^Let x anji y be the coordinates

of the elastic curve with respect to rectangular axes through

the free end of the beam, as in Fig. 54a. Let the uniform

load per linear unit be w; then for any section M = —^wx^, and

the general formula becomes EI . d^y/dx^ = — ^wx^. Integrating

this, there is found,

EIp-= -iwx^+C
ox

in which C is the constant of integration and dy/dx is the tan-

gent of the angle which the tangent to the elastic curve makes

with the axis of abscissas. To determine this constant, con-

sider that dy/dx becomes zero when x equals the length of the



136 Cantilever and Simple Beams Chap. VI

beam, /; hence the value of C is ^wl^ and then,

Integrating again, and determining the constant by the con-

dition that y e^juals zero when x equals zero, there results,

which is the equation of the elastic curve. When x=l, the

value of y is the deflection of the end of the beam below that

at the wall and this will be designated by./. Accordingly,

f=iwiyEI or f=iWP/EI
is the deflection of the end of a cantilever beam imder the uniform

load W, if the elastic limit of the material be not exceeded.

IP

Fig. Bia Fig. 546

Case II. Load P at the Free End.—^Take the origin at the

free end, as in Fig. 546, and let x and y be the coordinates of

the elastic curve at any section. The bending moment M is

—Px, and the general equation is EI . d^y/dx^ = —Px. By
integration there results EI . dy/dx= —^Px^+C and C is deter-

mined by the condition that the tangent dy/dx becomes zero

when x=l. Hence EI . 8y/dx = ^P{P—x'^), and the second

integration gives for the elastic curve EI .y = ^PPx—\Px^, the

constant being zero because y becomes zero when x is zero.

When x=l the value of y is the maximum deflection/, and/=
\PP/EI, which is 2f times as great as the deflection due to

the same load uniformly distributed over the length.

Case III. Load P at any Point.—Let kI be the distance of

the load from the left end as in Fig. 54c, where / is the length

of the beam and k any number less than unity. Take the origin

of coordinates under the load, then by the preceding case the

deflection under the load is ^P{1—kI)^/EI. The free end, how-

ever, is lower than the load and since M=o on the left of the

load, the radius of curvature of the elastic curve is there infinite
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{Art. 45) and that curve is a straight line. Let tan 6 be the tan-

gent of the angle which the tangent to the elastic curve under

the load makes with the horizontal; then the free end is lower

than the load by the amount kI tan^. The value of tan^ is deter-

3nined from Case II, by making x=o and 1=1—d \n the expres-

sion for dy/dx, and thus the value of kI tan^ is found to be

^PI^k{i —Kf/EI. Therefore, by adding the two quantities,

/=P/3(2-3k+k3)/6£/

"which is the deflection of the free end due to the given load.

When Ac = i, the load is at the wall and /=o; when k=o the

load is at the free end and / becomes the same as in the pre-

ceding case.

J
-̂i

P,

Fig. 5U

Case IV. Several Loads.—For a uniform load and a load P
at the end, the value of M is —^wx^—Px. By integration it is

found that the ordinate y is the sum of those due to W and P
separately, and,

is the deflection of the free end. Similarly, for any number of

loads, the deflection is the sum of the deflections due to the loads

taken separately; hence, as in cases of axial stress, each load

produces its effect independently of others. In order that this

deflection may be found correctly from the formulas, it is

necessary that the maximum unit-stress S computed for all the

loads from the flexure formula S.I/c=M shall not exceed the

elastic limit of the material.

In all cases the deflection of a cantilever beam of uniform

section varies directly as the load and the cube of the length,

and inversely as E and /. For a rectangular section, l=-^hcP,

so that the deflection varies inversely as the breadth and inversely

as the cube of the depth. These laws also hold for the simple

beams discussed in the next article.
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Prob. 54a. In order to find the modulus of elasticity of a cast-iron

bar 2 inches wide, 4 inches deep, and 6 feet long, it was balanced upon

a support and a weight of 4 000 pounds hung at each end, causing a

deflection of 0.401 inches. Compute the value of E.

Prob. 546. A wooden cantilever, 3 inches wide, 4 inches deep, and

15 feet long, carries two equal loads as shown in Fig. 54d, one being

5 feet from the end and the other 10 feet from the end. Compute the

weight of these loads so that the maximum unit-stress 5 may be two-

thirds of the elastic limit. Compute the deflection at the end due to

the two loads.

Art. 55. Deflection of Simple Beams

The deflection of a simple beam due to a load at the middle,

or to a uniform load, is readily obtained from the expressions

just deduced for cantilever beams. Thus, for a simple beam
of span I with a load P at the middle, let Fig. 55a be inverted

and it will b? seen to be equivalent to two cantilever beams of

length J/ with a load \P at each end. The formula for the maxi-

mum deflection of a cantilever laeam hence applies to this figure,

if / be replaced by \l and P by JP which gives/ =PP/48EI for

the deflection at the middle of the simple beam. It will be well,

however, to use the general formula (45) and discuss each case

independently.

Case I. Uniform Load.—Let w be the load per linear unit

and X the distance of any section from the left end. For this

section M = ^wlx—^wx^ and the differential equation of the

elastic curve is,

EIt-^= iwlx— iwo(?^

Integrate this and find the constant by the condition that the

tangent dy/dx equals zero when x is ^l; then,

EI~-= \wlx^—\wx^—-^w^

Integrating again and determining the constant by the condition

that y is zero when x is zero, there is found,

24£7ji=w{—x^+2lo(^—Px)
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Now, making x = ^l, the value of y is the deflection/, which is

negative because it is measured downward from the axis of

abscissas through the supports. It is, however, unnecessary

to write this sign, and hence,

/=^k ^IVEI or /=^|Tm3/£/
is the elastic deflection of the 'simple beam under the uniform

load W.

Case II. Load P at the Middle.—^As before let the origin

be taken at the left support, as in Fig. 55a. For any section between

the left support and the middle M = ^Px and the differential

equation of the elastic curve is EI . d^y/dx'^ = ^Px. Integrate

this and find the constant by the evident condition that

dy/dx=o when x = ^l. Then integrate again and find the con-

stant by the fact that y=o when x=o. Thus,

48EIy=Pi40(^-SPx)

is the equation of elastic curve between the left-hand support

and the load. For the greatest deflection make x = ^l, then,

f=:^,Pl^/EI

is the deflection due to the single load P at the middle, which

is 1.6 times as great as that due to the same uniform load,

p ^ tp

Fig. 55a Fig. 556

Case III. Load P at any Point.—^Here the expressions for

the moment M are different on opposite sides of the load, and

hence there are two elastic curves which have distinct equations

but which have a common tangent and ordinate under the load.

As in Fig. 556 let the load be placed at a distance kI from the

left support, K being a niunber less than unity. Then the left

reaction is R=P(i—k). From the general equation (45), with

the origin at the left support, there are found,

On the left of the load,

(a) £/g=-R« (6) EI^=iRx^+Ci

(c) EIy=iRx^+Cix+C2
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On the right of the load,

(a)' EI^^^Rx-P{x-Kf)

(c)' EIy=iRx^-iPo<^+iPidx^+C3X+CA

To determine the constants consider in (c) that y=o when x=o,

and hence that C2=o. Also in (c)', y=o when x=l; again,

since the curves have a common tangent under the load, (b)

equals (b)' when x=kI, and since they have a common ordinate

at that point (c) equals (c)' when x = kI. Or,

o=iRP-iPP+iPKp+C^+Ci

ii?«2/2+ Ci=P«2;2+ ^PkH^Cs

iRi^P+ CiKl^iRi^l^+iPi^P+ C3id+ Ci

From these three conditions the values of Ci, Cz, and d are

determined. Then the equation of the elastic curve on the left of

the load is found to be,

(>EIy=P{T.-K)s^-P{2K-2,K^+ i^)Px

To ascertain the maximum deflection, the value of x which ren-

ders y a maximiun is to be obtained by equating the first deriva-

tive to zero. If K is greater than \, this value of x inserted in the

above equation gives the maximum deflection; if k is less than

\, the maximum deflection is on the other side of the load. For

Instance, if /c=f, the equation of the elastic curve on the left

of the load is, 2,^/[EIy = i6Px^— i^PPx, and y has its maximum

value when nc =0.559/. '^^^ greatest possible deflection due to

a single load occurs when it is at the middle of the span and its

value is that deduced in Case II.

Case IV. Several Loads.—^Here, as for cantilevers, the

deflection due to several loads is obtained by taking the, sum of

the several deflections; but it must be carefully noted that the

computed value will be correct only when the unit-stress 5 at

the dangerous section is less than the elastic limit of the material.

The above formula for the deflection due to a load at the middle

is frequently used to determine the modulus of elasticity E, several
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values of/ being measured for several different loads, in order to

obtain a mean value of E.

Prob. 55a. When k is greater than J in Fig. 556, show that the

maximum deflection isf=Pl^(i—K)(^K—^K^)i/^EI.

Prob. 556. In order to find the modulus of elasticity of Quercus

alba, a bar 4 centimeters square and one meter long was supported at

the ends, and loaded in the middle with weights of 50 and 100 kilo-

grams, measured deflections being 6.6 and 13.0 millimeters. Com-
pute the mean value of E in kilograms per square centimeter.

Art. 56. Comparative Strength and Stiffness

The strength of a bar under tension is measured by the load

that it can carry with an assigned unit-stress. In the same

manner the strength of a beam is measured by the load that

it can carry with an assigned unit-stress on the remotest fiber at the

dangerous section. Let it be required to determine the relative

strength of the four following cases,

ist, A cantilever loaded at the end with W
2nd, A cantilever uniformly loaded with W
3rd, A simple beam loaded at the middle with W
4th, A simple beam loaded uniformly with W

Let / be the length in each case. Then, from Art. 47 and the

flexure formula M=5 . 1/c, there is found,

forist, M=W1 and hence W=SI/cl

for 2nd, M=iWl and hence TF=2.5//c/

for 3rd, M=\wi and hence W=^.SI/cl

for 4th, M=\Wl and hence W=?,.SI/d

Therefore the comparative strengths of the four cases are as

the numbers i, 2, 4, 8. That is, if four such beams be of equal

.size and length and of the same material, the second is twice as

strong as the first, the third four times as strong, and the fourth

eight times as strong. From these equations also result the

following important laws

:

The strength of a beam varies directly as S, directly as /,

inversely as c, and inversely as the length I.
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A load uniformly distributed produces only one-half as

much stress as the same load when concentrated.

These apply to all cantilever and simple beams whatever be

the shape of the cross-section.

When the cross-section is rectangular, let b be the breadth

and d the depth, then the value of I/c is ^b(P and the above equa-

tions become W=aSbcP/6l, where the number a is i, 2, 4, or 8

as the case may be. Therefore,

The strength of a rectangular beam varies directly as its

breadth, directly as the square of its depth, and inversely as its

length.

The reason why rectangular beams are put with the greatest

dimension vertical is thus again shown.

In the above equations the load W is the allowable load when

S is the allowable unit-stress, and W is the load which will rupture

the beam when S is the fictitious ultimate flexural unit-stress

whose mean values are given in Art. 52.

The stiffness of a bar under tension is measured by the load

that it can carry with a given elongation. Similarly the stiff-

ness of a beam is indicated by the load that it can carry with a

given deflection. For the two preceding articles the values of W
for the four common cases of cantilever and simple beams arei

for a cantilever loaded at the end, ^^=3 - Elf/1?

for a cantilever uniformly loaded, W= 8 . Elf/l^

for a simple beam loaded at middle, 17= 48 . Elf/l^

for a simple beam uniformly loaded, W=i.|.i.
. Elf/fi

which show that the relative stiffness of these four cases are as

the numbers i, 2|, 16, and 2s|.

These equations also show that the stiffness of a beam, when

the greatest unit-stress does not exceed the elastic limit of the

material, varies directly as E and / and inversely as the cube

of the length. It thus appears that the laws of stiffness are

very different from those of strength. For a rectangular section

/=yV^^^j 3,nd hence the stiffness varies directly as the breadth

and directly as the cube of the depth.
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The four cases above discussed have given the following

expressions for the allowable load; for the strength of the beam

W= a . SI/cl where a= i, 2, 4, or 8

and for the stiffness of the beam,

W=^ . ElfIP where /?= 3, 8, 48, or 76^

Bj' equating these values of W, the following relations between

the imit-stress 5 and the deflectiony are obtained,

S/f=pEc/aP or pEcf=ccSP (56)

which are only vaUd when S is less than the elastic Umit of the

material- These equations show that the deflection /, for similar

,

beams of the same material xmder the same unit-stress S, varies

as P/c.

Table 11, at the end of this volume, recapitulates the impor-

tant facts regarding strength, deflection, and stiffness, which

have been deduced in the preceding articles.

Prob. 56a. Compare the strength of a joist 3X8 inches when laid

with long side vertical with that when it is laid with short side vertical.

Compare also the stiffnegses.

Prob. 566. Find the deflection of the lightest steel lo-inch I beam,

9 feet in span, when stressed by a uniform load up to 30 000 pounds

per square inch.

Prob. 56c. Compare the working strength of a light 9-inch steel I

beam with that of a wooden beam 8X12 inches in section, the span

being the same for both.

Art. 57. Cantilever Beams oe Uniform Strength

AU beams thus far discussed have been of constant cross-

section throughout their entire length. But in the flexure formula

S .I/c=M, the unit-stress S is proportional to the bending

moment M, and hence varies throughout the beam in the same

way as the moments vary. Accordingly some parts of the beam
are but sUghtly stressed in comparison with the dangerous sec-

tion, and perhaps more material is used than is necessary.

A beam of imiform strength is one so shaped that the unit-

stress S is the same in all sections at the upper and lower sur-
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faces. Hence to ascertain the form of such a beam the imit-

stress S must be taken as constant and I/c be made to vary with

M. The discussion will be given only for the simplest cases,

namely, those where the sections are rectangular, the breadth

being b and the depth d. For these I/c= \bcP, and the flexure

formula becomes,

\SbcP=M or hd?=(iMIS

In this bd? must be made to vary with M in order to give forms

of uniform strength.

Flau ^
Fig. 57a

For a cantilever beam with a load P at the end, the value of M
without regard to sign is Px and the equation becomes lSb(P=
Px, in which P and S are constant. If the breadth is taken as

constant, d^ varies with x and the profile is that of a parabola

having its vertex at the free end. The depth di of the beam

at the wall is found from \Sbdi^=Pl, and comparing this with

the first equation there results the simpler form d=di\/xjl for

the relation between d and x; Fig. 57a shows a profile plotted

from this equation. When the depth of the cantilever beam

is constant, then b varies directly as x and the plan of the beam
is a triangle, as shown in Fig. 57&; the breadth &i at the wall is

foimd from ^Sd%i^Pl, and hence equation between b and x

is more simply expressed by b= (bi/t)x.

For a cantilever beam imiformly loaded with w per linear

imit M^^wx^, and the equation hecoia.t5 \Sbd'^ = ^'wx^, in which

w and S are known. If the breadth is taken as constant, then d

varies as x and the side view is a triangle, as in Fig. 57c, where

the depth at any point is given by d={di/l)x, the depth di being

that at the wall, which is determined from lSbdi^=^wP. If,

however, the depth is taken as constant, then b varies as x^,
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and b may be found from h = b\{x/rf, where 61 is the breadth

at the wall; this is the equation of a parabola having its vertex

at the free end and its axis vertical, or the plan of the beam may
be formed by two parabolas as shown in Fig. bid.

The vertical shear modifies in practice the shape of these

forms near their ends. For instance, a cantilever beam loaded

at the end with P requires a section area at the end equal to

P/Sa where 5, is the allowable shearing unit-stress. This section

area should continue until a value of x is reached where the

same section area is found from the equation of the form of

uniform strength. Exact agreement with theoretic conditions

is rarely possible on account of the e3^ense of manufacture,

and in fact cast iron is the only material which has been advan-

tageously used for these forms. A cantilever of structural steel

is built in a different way (Art. 58).

Fig. 57c Fig. 57i

The deflection of a cantilever beam of uniform strength is

evidently greater than that of one of constant cross-section, since

the unit-stress S which acts only at the wall in the latter case,

acts throughout the entire length in the former. In any case

it may be determined from the general ioimvi^ EI . d^y/8x^=

M

by substituting for M and / their values in terms of x, integrating

twice, ..determining the constants, and then making x equal to I

for the maximum value of y.

For a cantilever beam loaded at the end and of constant

breadth, as in Fig. 57a, this formula becomes,

8^y_ izPx_ i2P^ _j
dx^~Ebd^ ~Ebd/'

Integrating twice and determining the constants, as in Art. 54,
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the equation of the elastic curve is found to be,

In this let x=l, then y is the deflection / of the end, and / =
^PF/Ebdi^, which is double the deflection of a cantilever beam

of uniform section and depth di.

For a cantilever beam loaded at the end and of constant

depth, the general formula becomes,

d^y_ i2Px_ 12PI

dx2~Ebd^ "Ebid^

By integrating this twice and determining the constants as before,

the equation of the elastic curve is found, whence the deflection

is f=6PP/Ebid^ which is fifty percent greater than that of a

cantilever of uniform section and breadth bi.

Prob. 57. A cast-iron cantilever beam of uniform strength is to be

4 feet long, 3 inches in breadth, and to carry a load of 15 000 pounds

at the end. Find the proper depths for every foot in length, using

3 000 pounds per square inch for the horizontal unit-stress, and 4 000

pounds per square inch for the shearing unit-stress.

Art. 58. Simple Beams of Uniform Strength

In the same manner as that of the last article it is easy to

deduce the forms of uniform strength for simple beams of rectan-

gular cross-section.

For a load at the middle and breadth constant, M = ^Px,

and hence, ^Sbd^ = ^Px. Accordingly d^ = (^P/Sb)x, from which

values of d may be found for assumed values of x. Here the

profile of the beam will be parabolic, the vertex being at the

support, and the maximum depth under the load; if di is the

depth at the middle, the equation of the parabola becomes

d^=di^(x/^l).

For a load at the middle and depth constant, M = \Px as

before. Hence b = (^P/Sd^)x, and the plan must be triangular

or lozenge-shaped, the width uniformly increasing from the

support to the load. If bi is the breadth at the middle, the equa-

tion of the line becomes b = bi(x/^l).
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For a uniform load and constant breadth, M = ^'wlx—^'wx^,

and hence, d^ = (^w/Sb)(lx—x^), and the profile of the beam must

be elliptical, or preferably a half-ellipse. If di is the depth at the

middle the equation of the ellipse hecomesd^ = {4di^/P){lx—x^).

For a uniform load and constant depth, b=(^w/Sd^)(lx—x^),

hence the plan should be formed of two parabolas having their

vertices at the middle of the span. If 61 is the breadth at the

middle of the span, this equation becomes b = (4bi/P)(lx—x'^).

The figures for these four cases are purposely omitted, in

order that the student may draw them for himself; if any dif-

ficulty, be found in doing this, let numerical values be assigned

to the constant quantities in each equation and the variable

breadth or depth be computed for different values of x.

In the same manner as in the last article, it can be shown
that the deflection of a simple beam of uniform strength loaded

at the middle is double that of one of constant cross-section when
the breadth is constant, and is one and one-half times as much
when the depth is constant.

Fig. 58

Cast-iron simple beams are sometimes made approximately

in the forms required by the above equations, care being taken

to provide sufficient sectional area near the supports to safely

carry the vertical shears; such beams are mainly used in machine-

shops on planers to carry the cutting tool. Travelling cranes

used in shops are also approximately of this form, but these

are made by riveting steel plates and shapes so that the section

areas are not rectangular.

Plate girders, used extensively in buildings and bridges, are

made by riveting together four angles, a web plate, and cover

plates. Fig. 58 shows the general arrangement without the
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rivets. The section at A is made ample to resist the shear and

that at B to resist either shear or moment; there being no cover

plates on the distance AB. Between B and C two cover plates

are used to provide sufficient section for the moment at C, while

between C and D two additional cover plates are added so that

the section at the middle D will be sufficient to resist the maxi-

mum moment at that place. A plate girder, then, is approxi-

mately a beam of uniform strength.

Prob. 58a. Draw the profile for a cast-iron simple beam of uniform

strength, the span being 8 feet, breadth 3 inches, and load at the mid-

dle 30 000 pounds; using the same working unit-stresses as in Prob. 57.

Prob. 58&. Compute the deflection of a steel spring of constant

depth and uniform strength which is 6 inches wide at the middle, 52

inches long, and loaded at the middle with 600 pounds, the depths

being such that the uniform fiber stress is 20000 pounds per square

inch.
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Chapter VII

OVERHANGING AND FIXED BEAMS

Art. 59. Beam Overhanging one Support

A beam is said to be 'fixed ' at a support when it is subject

to such constraint that the elastic curve is there horizontal. The-

cantilevers discussed in the preceding articles have been fixed,

at one end by the restraint of the wall and the maximum moment,

has been found to occur at that end. Beams are sometimes^

fixed at one end and supported at the other (Art. 60) and some-

times fixed at both ends (Art. 62). The effect of this restraint

is to diminish the deflection, and hence the strength and stiff-

ness are usually increased.

Beams overhanging one support, as in the following figures,

may be said to be fixed when the lengths and loads have such

values that the tangent to the elastic curve at that support is

horizontal. This condition is rarely fulfilled, but the discussion

of overhanging beams is very useful and important. A canti-

lever beam has its upper fibers in tension and the lower in com-

pression, while a simple beam has its upper fibers in compression

and the lower in tension. Evidently a beam overhanging one

support has its overhanging part in the condition of a canti-

lever and the part near the other end in the condition of a simple

beam. Hence there must be a point where the curvature changes

from positive to negative, and where the fiber stresses change

from tension to compression. This point i is called the 'Inflec-

tion Point
'

; it is the point where the bending moment is zero,

for if the curvature changes from positive to negative, M must

do likewise (Art. 45) . An oveirhanging beam is said to be sub-

ject to a constraint at the support beyond which the beam projects,

or, in other words, there is a stress in the horizontal fibers over

that support.

Since the beam has but two supports, its reactions may be
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found by using the principle of moments as in Art. 36. Thus,

if the distance between the supports be I, the length of the over-

hanging part be m, and the uniform load per linear foot be w,

the two reactions for Fig. 59a are,

Ri= iwl—^wm{m/l) R2=iwl+wm+iwm(m/l)

From these the vertical shear at any section may be computed

from its definition in Art. 37 and the bending moment from its

definition in Art. 38, bearing in mind that for a section beyond

the right support the reaction i?2 must be considered as a force

acting upward. Thus, for any section distant x from the left

support.

When X is less than I When x is greater than /

V=Ri-wx V=Ri+R2-wx
M=RiX—iwx^ M=RiX+R2{x—l)—iwx^

The curves corresponding to these equations are shown on

Fig. 59a. The shear curve consists of two straight lines; V=R
when x=o, and V=o when x=Ri/w; at the right support

V=Ri—wl from the first equation; F=i?i+i?2— w/ from the

second, and V= o when x=l+m. The mo'ment curve consists

of two parts of parabolas; M=o when x=o, and If is a maxi-

mum where the shear passes through zero; at the inflection

point M=o and x=2Ri/w; also M has its maximum negative .

value at the right support where the shear again passes through

zero, and M= o when x=l+m. The diagrams show clearly

the distribution of shears and moments throughout the beam.

1— —f*--m— *i
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Fig. 59o Fig. 596

In any particular case it is best to work out the numerical

values without using the above algebraic expressions. For

example, if I= 20 feet, m= io feet, and ^=40 poimds per Hnear
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foot, the reactions are Ri = 300 and i?2 = gcx) pounds. Theji the

point of zero shear or maximum moment is at ^=7-5 feet, the

inflection point at x=i^ feet, the maximum shears are +300,
— 500, and +400 pounds, and the maximum bending moments

are +1125 and — 2000 pound-feet. Here the negative bend-

ing moment at the right support is numerically greater than

the maximiim positive moment. The relative values of the

two maximum moments depend on the ratio of w to /; if « = o,

there is no overhanging part and the beam is a simple one; if

m= J/, the case is -that just discussed; if m=l, the reaction Ri

is zero, and each part is a cantilever beam.

After having thus foimd the maximum values of V and M
the beam may be investigated by the appUcation of the shear

and flexure formulas of Art. 41 in the same manner as a canti-

lever or simple beam. By the use of formula (45) the equation

of the elastic curve between the two supports may be deduced

by two integrations and the proper determination of the con-

stants, and it is,

24EIy=4Ri(}^—Px) —w^pi^—Px)

From this the maximum deflection for any particular case may
be determined by obtaining the derivative of y with respect to X)

equating it to zero, solving fon x, and then finding the corire-

sponding value of y.

If concentrated loads be placed at given positions on the

beam the reactions are foimd by the principle of moments, and

then the entire investigation can be made by the methods above

described. Fig. 596 shows the shear and moment diagram for

two loads and here, as always, the maximum moments occur

at the sections where the shears change sign.

Prob. 59a. Three men carry a stick of timber, one taking hold at

one end and the other two at a common point. Where should this

point be so that each may bear one-third the weight ? Draw the shear

and moment diagrams.

Prob. 596. A beam 20 feet long has one support at the right end

and one support at 5 feet from the left end. At the left end is a load

of 180 pounds, and at 6 feet from the right end is a load of 125 pounds.
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Find the reactions, the inflection point, and draw the shear and moment

diagrams.

Art. 60. Beam Fixed at one End

A beam with one overhanging end, as in Fig. 59a, has the

span I in the condition of a beam fixed at the right end ai^d sup-

ported at the other, when the length m is such that the tangent

to the elastic curve is horizontal over the right support. Fig. 60a

shows the practical arrangement of such a beam, the right end

being held horizontal by the restraint of the wall. The usual

arrangement where the left support is on the same level as the

lower side of the beam at the wall will now be discussed, the

section area of the beam being constant through its length.

m̂
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Fig. 60o Fig, 606

Case I. Uniform Load.—Let R be the reaction of the left

end in Fig. 60a, and x the distance from that end to any section.

Ill the general equation of the elastic curve EI . d^y/dx^=M,

the value of M is Rx— ^wx^. Integrating once, the constant is

determined from the condition that dy/dx=o when x=l. Inte-

grating again the constant is found from the fact that y=o when

x=o; then,

24EIy==4R(p(fl—^Px) —w{x^—4l^x)

Here also y=o when x=l, and therefore J? = |w/; hence the

left reaction is three-fourths of that for a simple beam.

The moment at any point now is M =^wlx—^wx^, and by

placing this equal to zero, it is seen that the point of inflection

is at x=^l. The. maximum positive moment occurs when

SM/dx=o or when x=^l, and its value is +-:i^-gwP. The maxi-

mum negative moment occurs when x = l and its value is —^wP.
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The distribution of. shears and moments is as shown in the

diagrams.

The point of maximum deflection is found from the above

equation of the elastic curve
;

placing the derivative equal to

zero there results 8o(^—glx^+l^=o, one root of which is

a; =0.42 1 5/, while the others are inapplicable to this problem.

Hence y=o.oo54w/V£/ is the value of the maximum deflection.

Case II. 'Load P at Middle.—Here it is necessary to con-

sider that there are two elastic curves having a common ordinate

and a common tangent under the load, since the expression,

for the moment are different on opposite sides of the load. Thus

taking the origin as usual at the supported end.

On the left of the load,

(a) EI^=Rx (b) EI^=iRa^+Ci

(c) EIy=iR3(^+Cix+Cs

On the right of the load the similar equations are,

(ay EI^,=Rx-P(x-if)

(by EI^=iRx2-iPx^+iPlx+C2

(cy EIy=iRx?-iPs^+iPloi^+C2X+Ci

To determine the constants consider in (c) that y=o when x=o
and hence that Cs^o. In (by the tangent dy/dx=o when

x = l and hence 0^= —^RP- Since the curves have a common

tangent under the load,^ (b) = (by for x = ^l, and thus the value

of Ci is found. Since the curves have a common ordinate under

the load, (c) = (c)' when x = ^l, and thus d is found. Then,

(c) 24EIy=4Rx^+3PPx-i2RPx

(cy 48EIy= 8i23c3_sP3^+ 1 2Plse^-24RPX+PP

are the equations of the two elastic curves. Making x = l in

(cy the value of y is zero, and then the left reaction is R=^^P.

The moment on the left of the load is now M =j\Bx, and

that on the right M == —i\Px+^Pl. The maximum posi-

tive moment obtains at the load and its value is {^Pl. The
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maximum negative moment occurs at the wall, and its value

is -hPl- The inflection point is at x=^l. The deflection

under the load is readily found from (c) by making x = ^l. The
maximum deflection occurs at a less value of x, which may be

found by equating the first derivative to zero. Fig. 60& shows the

distribution of shears and moments.

Case III. Load P at any Point.—The distance of the load

from the left support being d the following results may be deduced

by a method exactly similar to that of the last case.

Reaction at supported end =\P{2— t,k+ i?)

.. Reaction at fixed end =iP(3«— «^)

Maximum positive moment = ^PIk{2— 3«+ /c^)

Maximum negative moment =i^Pl{K— 1^)

The absolute maximum deflection for this case occurs under the

load when 3^=0.414/, and its value will be found to be given by

f=o.oog8PiyEI.

Prob. QOa. Draw the shear and moment diagrams for a span of 12

feet, due to a load P at 10 feet from the left end.

Prob. 60b. Find the position of load P which gives the maximum
positive moment. Find also the position which gives the maximum
negative moment. Compute these maximum moments and compare

them with those due to a load at the middle.

' Art. 61. Beams Overhanging Both Supports

When a beam overhangs both supports, the moments for

sections beyond the supports are negative, and in general between

the supports there will be two inflection points. If the over-

hanging lengths are equal, the reactions will be equal under

imiform load, each being one-half the total load. In any case,

whatever be the kind of loading, the reactions may be found by
the principle of moments (Art. 36), and then the vertical shears

and bending moments may be deduced for all sections, after

which the shear and flexure formulas (Art. 41) can be used for

any sp^ecial problem.

Under a uniformly distributed load, each overhanging end
being of length m, and the middle span being /, each reaction is
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wm+^wl, the maximum shears at the supports are wm and ^l,

the maximum moment at the middle is +'w(^P — ^m^), the maxi-

mum moment at each support is —^wm^, and the inflection

points are distant ^{P—4m^)^ from the middle of the beam.

Fig. 61a shows the distribution of moments for this case. When
m=o, the beam is a simple one; when l=o, it consists of two

cantilever beams. When m is equal to or greater than ^/,jthere

are no positive moments in the middle span.

^ ^ ^

Fig. 61a Fig. 616

When concentrated loads are ©n the beam, as in Fig. 61 &,

the reactions are readily found by the method of Art. 36, the

shears and moments computed for several sections by the defini-

tions of Arts. 37 and 38, and the shear and moment diagrams

may then be drawn. The maximum negative moments occur at

the supports and the maximum positive moment imder one

of the concentrated loads. The final maximum shears and

moments due to both uniform and concentrated loads are to be

obtained by combining the values found for these loads. When
the concentrated loads are light, it often happens that the final

maximum positive moment will be between two loads.

Prob. 61a. For Fig. 61a find the ratio of, / to w in order that the

maximum positive moment may numerically equal the maximum nega-

tive moment.

Prob. 616. A beam 30 feet long has one support at J feet from the

left end, and the other support at 10 feet from the right end. At each

end there is a load of 156 pounds and half-way between the supports

there is a load of 344 pounds. Construct the shear and moment

diagrams.

Prob. 61c. For Fig. 61a find the ratio of / to m in order that

there may be no positive moment.
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Art. 62. Beams Fixed at Both Ends

If, in Fig. 61a, the distances m be such that the elastic curve

over the supports is horizontal, the central span / is said to be

a beam fixed at both ends. The length m which will cause the

beam to be horizontal at the support can be determined by the

help of the elastic curve. For imiform load, the bending moment

at any section in the span / distant x from the left support is,

M= {wm+\wr)x—^{in+ x)"^

which may be written in the simpler form,

M=Mi+ \wlx—^wx^

where Mi represents the unknown bending moment —^wm^
at the left support. The distance m can hence be found when

Ml has been determined.

Again, for a single load P at the middle of / in Fig. 61a, the

elastic curve can be regarded as kept horizontal at the left sup-

port by a load Q at the end of the distance m. Then the bend-

ing moment at any section distant x from the left support, and

between that support and the middle, is,

M={Q^iP)x-Q{m+x) or M=Mi+ iPx

in which Mi denotes the unknown moment —Qm at the left

support. The problem of finding the bending moment at any

section hence reduces to that of determining Mi the moment

at the left support.

Case I. Uniform Load.—For this case the differential

equation of the elastic curve becomes,

EIj^^=Mi+ iwlx-iwx^

Integrating twice, making dy/dx=o when x=o and also when
x=l, there is found Mi= —^V'^^^jand the equation of the elastic

curve is

from which the maximum deflection is found to be /=-^-^wl^/EI.

The inflection points are located by placing M equal to zero,

which gives a;=J/(i±^V3). The maximum positive moment
is at the middle and its value is ^wP ; accordingly the horizontal
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stress upon the fibers at the middle of the beam is one-half

that at the ends. The vertical shear at the left end is ^wl, at

the middle o, and at the right end —^wl. Fig. 62a shows the

shear and moment diagrams.

Case II. Load P at Middle.—Here the differential equation

of the elastic curve is EI , 'x^=Mi + ^Px and in a manner

similar to that of the last case it is easy to find that the maxi-

mum negative moments are ^Pl, that the maximum positive

moment is ^Pl, that the inflection points are half-way between

the supports and the load, and that the maximum deflection is

J=T^^PP/EI.

^̂ 1 ^.
B^

Fig. 62a

P^
.<f1#K,^

Fig. 62J

Case III. Load P at any Point.—^Let the load P be at the

distance kI from the left end, k being any number less than unity.

Let Ml and Ri denote the unknown bending moment and reac-

tion at that end. ' Then for any section on the left of the load

M=Mi+ RiX, and for any section on the right of the load M=

Mi+Rix—P(x—kI). By inserting these in the differential

€quation (45), integrating each twice and establishing sufficient

•conditions to determine the unknown M^. and i?i and also the

constants of integration, the following results may be deduced:

Reaction at left end =P(i —2k^+2k^)

Reaction at right end =Pk2(3— 2k) ,

Moment at left end = —PIk{i —2k+i^)

Moment at right end = —PIk^(i — k)

Moment under load = +PIk^(2 —4K+ sk^)

When K=^, the load is at the middle and these results reduce to

the values found in Case II. The maximimi deflection occurs

under the load when it is at the middle.
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Prob. 62a. From the above results for Case III deduce the positions

of the two inflection points. Find the inflection points when two

equal loads are at JZ and f/ from the left end.

Prob. 626. What medium-steel I beam is required for a span of

24 feet to support a uniform load of 25 000 pounds with a unit-stress

5 of 16 000 pounds per square inch, the ends being merely supported?

What one is needed when the ends are fixed ?

Art. 63. Comparison of Beams

As the maximum moments for fixed beams are generally

less than for simple beams, their strength is relatively greatpr.

This was to be expected, since the constraint lessens the deflec-

tion which would otherwise occur. Under a uniform load PF,

the maximum moment for a simple beam is iWl, that for a beam

fixed at one end is ^Wl, and that for a beam fixed at both ends

is T^Wl; the fixing of one end does not increase the strength,

but the fixing of both ends increases it fifty percent.

For a single load P the maximtmi moment for a simple beam

is ^Pl and that for a beam fixed at both ends is ^Pl; hence the

strength of the latter beam under a concentrated load is double

that of the former. For the beam fixed at one end and sup-

ported at the other, it may be shown that the maximum posi-

tive moment due to a load P is 0.174P/ and that the maximum
negative moment is 0.192P/, the latter occurring when the load-

is at a distance 0.577/ from the supported end; hence the strength

of this beam is intermediate between that of the simple beam
and that of the beam with both ends fixed.

With respect to stiffness, the advantage is always on the side

of beams with fixed ends. Under uniform load the deflection

of the simple beam is -g^WP/EI, while for a beam fixed at

both ends it is one-fifth of this amount ; hence the beam fixed at

both ends is five times as stiff as the simple beam. Under a single

load a similar comparison of the deflections shows that the beam
fixed at both ends is four times as stiff as the simple beam. For

the beam with one end fixed, the degree of stiffness is interme-

diate between those for the other cases. The advantage of
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fixing the ends is hence much greater with respect to stiffness

than with respect to strength.

Table 12, at the end of this volume, recapitulates the above

results, and also those deduced in Art. 56 for cantilever and
simple beams. In all cases W represents the load whether con-

centrated or uniformly distributed. The results given for beams

with horizontal restraint, it may be observed, have been deduced

from the equation of the elastic curve, which is only valid when
the elastic limit of the material is not exceeded by the unit-stress S
at the dangerous section. When beams with one or both ends

fixed are loaded so that the elastic Umit is exceeded, the above

results deduced for reactions, moments, and deflections are not

apphcable except as approximations.

Let i/a represent the numerical coefficient in the column

of maximimi moments in Table 12 and i//? the nimierical coeffi-

cient in the column of maximum deflections. Then, as in Art.

56, the relation between the imit-stress 5 and the deflection /
is given by,

5//=/?£c/a^ or aSt^^^Ecf

provided the elastic limit of the material is not exceeded.

Prob. 63a. For a uniformly loaded beam with equal overhanging

ends, derive a formula for the deflection at the middle.

Prob. 636. Find the deflection of a 9-inch steel I beam of 6 feet

span and fixed ends when loaded at the middle so that the tensile and

compressive stresses at the dangerous section are 16 800 pounds per

square inch.

Art. 64. Supports on Different Levels

For all beams thus far discussed the two supports of the

beam have been taken as in the same horizontal plane, this being

the usual case in practice. A depression of one support below

the level of the other may, however, occur, and its influence

will now^be considered, this depression being taken as very small

so that the length of any small part of the elastic curve does not

sensibly differ from that of its horizontal projection (Art. 45).

For the ' simple beam in Fig. 64a, let the left support be
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depressed the distance h below the level of the right support

and let the horizontal distance between the supports be I; then

h/l is the tangent of the angle of inclination, or tan d=h/l.

Now, for a load P at the horizontal distance d from the left

support, the left vertical reaction is found by taking an axis of

moments at the right support to be P(i —k) which is independent

of d and the same as if the supports were on the same level. The
shears and moments throughout the beam due to the vertical

forces are hence unaltered by the inclination. In computing,

the fiber unit-stress from the flexure formula S . I/c = M, the

dimensions used in finding I/c are those of a normal section of

the inclined beam, and hence the unit-stress 5 is that on the

inclined upper and lower surfaces of the beam. A simple beam

is therefore unaffected by a slight change in the relative levels

of its supports, unless it be from the influence of the horizontal

forces which must come into play at the supports to prevent

sliding.

-K.I-

Fig. 64o Fig. 646 Fig. 64c

Let Fig. 64& represent a beam supported at the left end and

fixed horizontally at the right end, the vertical distance of the

left below |:he right end being h. Under a uniform load of w
per linear unit, the moment at a section distant x from the left

end is M^Rix—^wx^, where R\ is the unknown reaction at

the left support, and x is the distance of any section from that

support. Inserting this in the differential equation (45) and

integrating, the constant of integration is found by the condition

that dy/dx=o when x=l.- Integrating again, the constant is

found by the condition that y = o when x=o, and,

24EIy= 4RiX^

—

12RiPx+4wPx—wX*

is the equation of the elastic curve. In this y becomes h when

X becomes /, and accordingly the left reaction is.

This shows that the value of R depends upon the difference

of level of the two supports. When A = o, the case is the same
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as Case I in Art. 60 and i?i = |w/; when h is positive, or the

fixed end higher than the supported one, Ri is less than ^wh,

when h is negative, or the fixed end lower than the supported

one, i?i is greater than ^wl. The formula also shows that the-

value of i?i depends upon the kind of material of the beam,

since E is the modulus of elasticity of the material, and upon

the size and shape of its cross-section, since these are included

in the moment of inertia I.

Let Fig. 64c represent a beam with both ends fixed, and let

h be the vertical height of the right above the left end. Undef a

uniform load let the unknown reaction at the left support be Ri

and the unknown moment be M\. Then the differential equa-

tion of the elastic curve for an origin at the left support is, as

in Art. 62,

Integrating this twice, and introducing sufficient conditions to

determine the constants and the values of i?i and Mi, there result,

Ri= ^l-{i2EI/P)h Mi= -^wP+{(>EI/P)h

and accordingly these values depend not only upon the difference

in level of the supports but also upon the dimensions and kind

of material of the beam. When h=o, the values of R\ and Mx
are the same as those deduced in Art. 62. The reaction R^

at the right end of the beam is wl—Ry and the moment there

is found from Mi^'Mi+Rxl—^wF; accordingly,

R2=iwl+(i2EI/P)h M2=-^wp-{6EI/l^h

which show that at the higher end of the beam the reaction is

always positive and the moment always negative, while at the

other end they may be positive or negative depending on the

value of h.

Not only the reactions and moments at the supports but

also the shears and moments throughout the beam undergo change

when one support is lowered below the other. To ascertain

the magnitude of these changes, take a lo-inch I beam of struc-

tural steel which weighs 25 pounds per linear foot, for which

£=30000000 pounds per square inch and /=i22.i inches*
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(Table 6). Let one end be supported and the other fixed, as

in Fig. 64b the dear span be 15 feet and the total uniform load

W be 16 400 pounds. When both supports are on the same

level, the left reaction is ^W=6 150 pounds, and the maximum
moment is ^W/=3o75o pound-feet = 369 000 pound-inches; then

the flexure formula gives 5=369000/24.42=15 100 pounds per

square inch, which is a satisfactory unit-stress for steady load.

Now let the left support be lowered 1.2 inches below the fixed

end; the reaction at that end is then less than 6 150 pounds by

the amount 3£7^//^ = 3X30000000X122.1X1.2/180^=2 260

pounds, so that it is i?i = 6 150— 2 260=3 890 pounds. From

this the moment at the fixed end is found to be M=Ril—^Wl=
775 800 pound-inches, and the flexure formula then gives S=
31 800 pounds per square inch, which is too high a value for

safety as it is but little less than the elastic limit of the material.

The conclusion of this investigation is that beams with one

or both ends fixed should not be used in circumstances where

any material alteration in the levels of the supports may occur.

The above formulas show that when the left support in Fig. 646

is lowered the distance h= Wl^/SEI below the level of the other,

the left reaction under uniform load is zero and the beam is a

cantilever fixed at the right end. The same condition obtains

for the beam in Fig. 64c when it is uniformly loaded and the

left end is lowered the distance Wl^/24EI; when greater depres-

sions occur, the left redaction is negative and the beams are in

the condition of constrained cantilevers uniformly loaded and

having a concentrated load at the free end (Art. 65). It should

also be noted that the moments and reactions deduced above

are only valid when the elastic Umit of the materials is not

exceeded.

Prob. 64a. For the case of Fig. 64c, deduce expressions for the dis-

tance of the inflection points from the left support.

Prob. 64J. A wooden joist, 3X12X75 inches, is fixed in walls at

its ends and carries a total uniform load of 7 680 pounds. Compute
the maximum unit-stress S when the supports are on the same level;

also when one support is lowered one-quarter of an inch below the

other.
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Art. 65. Cantilever with Constraint

A case which occurs in the portal of a bridge is shown in

Fig. 65a, where AC and ac represent the two end posts connected

by bracing which transfers the wind pressures P to the points

B and b. The parts BC and be of these posts are cantilever

beams fixed at the lower ends C and c, while they are also kept

fixed at B and b by the restraint of the portal bracing. By turn-

ing this figure clockwise through a right angle, it will be in the

position of the end view of a bridge portal.
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Fig. 65a Fig. 656

To investigate a cantilever beam in which the free end is

kept horizontal by a restraint during its deflection, let Fig. 656

be considered. Taking the origin of coordinates at the free end

where the unknown moment is Mi, the differential equation

of the elastic curve is EI . d^y/dx^ =Mi—Px for any section

distant x from that end. Integrating this it becomes EI . dy/dx=

MiX—^Px^, the constant being zero because the tangent ^to the

elastic curve is horizontal at the left end. At the right end, for

which x=l, the tangent is also horizontal, and hence Mi= +^Pl.

The moment at the right end now is M2= -h^Pl—Pl= —^Pl, the

inflection point is at x=\l, since M=^Pl—Px=o locates this

point, and the moment diagram can then be drawn as shown.

It thus appears that the maximum moments for this^ case is

only one-half as large as the common cantilever beam loaded

at the end. The deflection of the end may be found by inte-

grating the above first derivative, and it is f=Pl^/i2EI, which is

only one-fourth of that of the common cantilever with a load

at the end.

Another case of a cantilever with restraint at the free end

is that of a crank-pin connected by two webs through which

the torsion of a shaft is transmitted. A figure showing such a



164 Overhanging and Fixed Beams Chap. Vll

crank-pin may be found in Art. 98, and it is there seen that the

bending moments due to the transmitted lateral force from the

web are exactly the same as those deduced above.

A cantilever may be fixed in a wall at any angle with the

horizontal. In that event, let I be the length of the inclined

beam, and let the axis of abscissas be taken as coinciding ^^ith

the tangent drawn to the elastic curve at the wall; then if the

angle of inclination be small the formulas deduced in Art. 54

will approximately give the vertical deflection of the end from

that tangent. The bending moment at the wall is found, how-

ever, by using the horizontal lever arms of the vertical forces.

When the angle of inclination is not small, the cantilever is sub-

ject to combined axial stress and flexure (Art. 101).

Prob. 65a. Deduce the moments at the supports for Fig. 656 with-

out using the equation of the elastic curve.

Prob. 656. A steel crank-pin, like that of Fig. 98, is hollow, i8

inches in outside and 6 inches in inside diameter and 12 inches in

length between the webs into which it is fixed. Compute the deflec-

tion of one end with respect to the other when the force P is 126 100

pounds.

Art. 66. Special Discussions

When a sinjple beam deflects the upper side is shortened

and the lower side elongated. These changes in length are due

to the horizontal compressive and tensile stresses acting along

those sides, and the amount of the same will now be found..

Let 5 be the unit-stress acting on the side at the distance c from

the neutral surface, and E the modulus of elasticity of the mate-

rial. Then, from Art. 9, the change of length which occurs in

the distance dx is {S/E)dx, and hence the total change of length

in the span I is the sum of all these elementary values; to find

this sum 5 is to be expressed in terms of x, since 5 varies through-

out the span. From the flexure formula (41) the value of S
is Mc/I, and for a simple beam under the uniform load w per

linear unit M is ^wlx-^wx^. Accordingly the entire change of

length of the upper or lower surface of the beam is,

e=i(cw/EI)f(lx-x^dx
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in which the integration is to be made between the limits I and o.

This gives e = wcP/i2EI which is the amount of shortening of

the upper side of the simple beam if c is the distance of that

side from the neutral surface,, or the amount of elongation of

the lower side of the beam if c is its distance from the neutral

surface. For example, let the beam be an imloaded steel bar,

2X2X72 inches, then the formula gives e=o.cioo 0122 inches.

Steel bars are sometimes used in measuring the base lines

of geodetic trianguUtions. The upper diagram of Fig. 66a shows

such a bar laid upon a horizontal plane and the positions of

two marks upon its upper surface very near its ends; the dis-

tance between these marks is determined with precision by com-

parisons with a standard. When the bar is used in the field,

it is laid upon two supports, as in the lower diagram of Fig. 66a,

and these supports should be so placed that the distance between

the marks remains unaltered by the deflection of the beam under

its own weight. In this beam with equal overhanging ends,

the upper fibers are shortened between the two inflection points

and elongated elsewhere; hence it is possible to place the sup-

ports at such a distance apart that the amounts of shortening

and elongation are equal and then the distance between the

two marks will be unaltered by the bending of the beam.
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Let L be the length of the beam, which is practically equal

to the distance between the two marks, m the length of each

overhanging end, and / the distance between the supports; thus

2m-\-l=L, and if the ratio of / to w is found, that of m to Z will

be known. Let x be any distance from the left end, then the

elongation of any upper fiber on the overhanging end in the

distance bx is {S/E)dx, which by the flexure formula becomes

(Mc/EI)dx or (wc/2EI)x^dx. Integrating this between the

limits m and o, there results ei = wcm^/6EI for the elongation
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of the upper fiber of the overhanging end. Again, the moment

Mats, section in the central span distant x from the left support

is Rix-iw{m+x)^, in which Ri is the reaction wm+^wl. It

hence follows that,

e2=i{wc/Er)f (lx—x'^—in^)8x

is the shortening of- the upper fiber in the central span; when

this is integrated between the limits / and o it gives 62 =

{wc/i2EI){P —6m^l). Now the condition that there shall be

no change of length in the upper fiber is 62— 261 = 0, which

leads to the cubic equation P—6m^l—4m^ = o. This equation

gives //m= 2.732 and the two other roots are negative. Hence

^=0.2113!, and /=o.S774L, so that, if the length of the bar

is one meter, the distances / and m should be 577.4 and

21 1.3 millimeters.

Beams of triangular section are rarely or never used in prac-

tice, since, if the vertex be upward the load cannot safely rest

on the sharp edge, and if the vertex be downward it cannot safely

rest on the supports. If b is the base and d the altitude, as in

Fig. 66&, the section factor I/c is, from Arts. 42 and 43, found

to be j\b(P and hence, from Art. 56, the triangular beam is one-

quarter as strong as a rectangular one having the same breadth

and depth. If the triangle is cut off at a depth y below the vertex,

thus forming a trapezoidal section with the bases b and by/d

and the height d—y, the section factor with respect to the new

neutral axis will be greater than -^bd^ when the value of y is

less than a certain limit. Hence the strength of a triangular

section may be increased by cutting off the vertex. This case

is one of mere theoretical interest and will not be developed

here, but it is shown on page 181 of^ Wood's Resistance of

Materials (New York, 1882) that the maximum strength of the

trapezoid thus formed is 9 percent greater than the strength of

the triangular section and that this occurs when the distance y
is 13 percent of the altitude d.

The following are a few interesting problems regarding beams

which involve ideas that have not received detailed discussion

in the preceding pages.
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Prob. 66a. Find the thickness of a white-pine plank of 8 feet span

so that it shall not bend more than one-fifth of an inch under a "head

of water of lo feet.

Prob. 666. Prove that the greatest possible length of a simple beam
of breadth b, depth d, for an assigned flexural unit-stress 5 is (4Sd/2v)i,

where v is the weight of a cubic unit of the material.

Prob. 66c. A simple wooden beam, one inch square and 15 inches

long, is uniformly loaded with 100 pounds. Find the angle of incli-

nation of the elastic curve at the supports.

Prob. 66d. A simple beam of structural steel, one inch in diameter^

is of such a length that the flexural unit-stress at the middle, due to its.

own weight, is equal to the elastic limit. Compute the inclination of;

the elastic curve at the supports.

Prob. 66e. A rolled steel beam, 5J meters long and 30 centimeters;

deep (Table 13), is fixed at its ends and carries a uniform load of 2 600.

kilograms. Compute the greatest horizontal unit-stress S in kilo-

grams per square centimeter, and ascertain the factor of safety of the

beam.
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Chapter VIII

CONTINUOUS BEAMS

Art. 67. General Principles

A continuous beam is one resting upon several supports,

these being usually in the same horizontal plane. A simple

beam may be regarded as a particular case of a continuous beam

where the niunber of supports is two. The ends of a continuous

beam are said to be free when they overhang, supported when

they merely rest on abutments, and fixed when they are kept

horizontal by the restraint of walls; the most common cases

are those of supported ends and this chapter will be mainly

devoted to their discussion.

The general principles of the preceding chapters hold good

for all kinds of beams. If a vertical plane is imagined to cut any

beam at any point, the laws of Arts. 39 and 40 apply to the stresses

in that section. The resisting shear and the resisting moment

for that section have the values deduced in Art. 41 and the shear

and flexure formulas are,

Sea=V S.I/c=M

Here S, is the vertical shearing unit-stress in the section, and

S is the horizontal tensile or compressive unit-stress on the fiber

most remote from the neutral surface, c is the shortest distance

between that fiber and neutral surface (Art. 42) ; a is the area

of' the cross-section and I its moment of inertia with repect to

the neutral axis. V is the vertical shear of the external forces

on the left of the section, and M is the bending moment of those

forces with reference to a point in the section. For any given

beam, evidently Sa and S may be found for any section as soon

as V and M are known, and these are determined for any given

loads from the definitions in Arts. 37 and 38. For brevity V
and M will hereafter be called shear and moment.

The general equation of the elastic line, deduced in Art. 45,
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is also valid for all kinds of beams. It is EId^y/dx^==M, where

X is the abscissa and y the ordinate of any point of the elastic

curve, and E the coefficient of elasticity of the material.

The shear V is the algebraic sum of the external forces on

the left of the section, or, as in Art. 37,

y = Reactions on left of section minus loads on left of section.

For simple beams and cantilevers the determination of V for

any special case was easy, as the left reaction could be readily

foimd for any given loads. For continuous beams, however,

it is not, in general, easy to find the reactions, and hence a different

method of determining V is usually necessary. Let Fig. 67

represent one span of a continuous
, beam. Let V be the shear

for any section at the.

distance x from the left

support, and V the shear I

—Kl—,^

3

Fig. 67

at a section infinitely near \^

to the left support. Also

let IPi denote the sum

of all the concentrated loads on the distance x, and wx the uniform

load. Then because V is the algebraic sum of all the vertical

forces on its left, the definition of vertical shear gives,

V=V'-wx-SP-i (67)

Hence the shear V can be determined for any section in the Span

as soon as V is known.

The moment M is the algebraic sum of the moments of the

external forces on the left of the section with reference to a point

in that section, or, as in Art. 38,

^1^= moments of reactions minus moments of loads

For the reason just mentioned, it is in general necessary to deter-

mine M for continuous beams by a different method. Let M'
denote the moment at the left support of any span as in Fig. 67,

and M" that at the right support, while M is the moment for

any section distant x from the left support. Let Pi be any con-

centrated load upon the space a; at a distance d from the left

support, K being a fraction less than unity, and let w be the uniform

load per linear unit. Since the shear V in Fig. 67 is equal to
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the resiiltant of all the vertical forces on the left of a section just

at the right of the left support, let m be the distance of the line

of action of that resultant to the left of that support. Then the

definition gives, for the moment at any section,

M=V'{m+x)—wx . ^x—2 . Pi(x—id)

But the quantity V'm is equal to the sum of the moments of

all the forces on the left of the left support with respect to that

support and hence it is the moment M' at the left support of

the span. Hence,

M=M'+ V'x-iwx^-I . Pi{x-Kl) (67)'

from which the moment M may be found for any section in the

span as soon as M' and V are known.

The shear V at the support of the span may be easily found

if the moments M' and M" be known. Thus in equation (67)'

make x=l, then M becomes M", and hence,

V'l=M"-M'+ ^wP + IPxQ—kI) (67)"

and hence the problem of the discussion of continuous beams

consists in the determination of the moments at the supports.

When these are known, the values of M and V may be deter-

mined for every section in any span, and the investigation of

questions of strength and deflection be made from the formulas

(41)" and (45). The above formulas apply to cantilever and

simple beams also. For a simple beam, M' = M" = o, and

V' = R. For a cantilever beam, M' = o for the free end, and

M" is the moment at the wall.

The relation between the moment and the shear at any sec-

tion is interesting and important. At a section distant x from

any support, the moment is M and the shear is V. At the sec-

tion distant x+dx from the support, the moment is M+Vdx,
which may also be expressed as M-\-dM. Accordingly,

V8x=8M or dM/dx=V

This may also be found by finding the derivative of M with

respect to x from (67)' and comparing it with (67). Therefore

The derivative of the moment equals the shear
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and from this it is seen that the maximum moments occur

at the sections where the shear passes through zero.

Prob. 67. A bar of length 2I, and weighing w per linear unit, is

supported at the middle. From (67) and (67)' find general expressions

for the shear and moment at any section on the left of the support

and also at any section on the right of the support. Draw the shear

and moment diagrams.

Art. 68. Method of Discussion

The theory of continuous beams presented in the following

pages includes only those with constant cross-section having

the supports on the same level, since only such are used in engi-

neering constructions. Unless otherwise stated, the ends will

be supposed simply to rest upon their supports, so that there

can be no moments at those points. Then the end spans are

somewhat in the condition of a simple beam with one overhang-

ing end, while the other spans are somewhat in the condition

of a beam with two overhanging ends. At each intermediate

support there is a negative moment, and the distribution of

shears and moments due to imifonn load is that shown in Fig. 68.

When an end span is short, the reaction at that end may become

zero or even be negative; in order that a negative reaction may

exist, it is necessary that the end of the beam be anchored or

fastened to the support.

^^ ?2 ts
"J*

ts

II II I

Fig. 68

As shown in Art. 67, "the investigation of a continuous beam

depends upon the determination of the moments at the sup-

ports. In the case of Fig. 68, the moments at the supports 2,

3, and 4, may be designated M2J M3, and Mi. Let Vi, V2,

Vz, and Vi denote the shears at the right of those supports..

The first step is to find the moments M2, M3, and Mi. Then

from formula (67)" the values of Vi, V2, Vz, and Vi are founds
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and thus by formula (67)' an expression for the moment in

each span may be written, from which the maximum positive

moments may be determined. Lastly, by the shear and flexure

formulas of Art. 41 the beam may be investigated.

For example, let the beam in Fig. 68 be regarded as of four

equal spans and uniformly loaded with w pounds per linear

unit. By a method to be explained in the following articles it

may be shown that the moments at the supports are,

M2= —i-gwP Ms= - i-gwP Mi= —igwP

From formula (67)" the shears at the right of the several sup-

ports are found to have the values,

Vi= iiwl V2=iiwl Vs=i%wl Vi=iiwl

And from (67) those on the left of the supports 2, 3, 4, 5, are

found to be, —^^wl, —^wl, — ^fw/, —^^wl. From formula

(67)' the general expressions for the moments now are,

for first span, M= +^^wlx—iiax^

for second span, M=—-^^wP+^wlx— \moe^

for third span, M=—-^wP'-\-Wwlx—\wo?

for fourth span, M=—-^-gwP+^^lx—^x^

From each of these equations the inflection points may be found

by putting M=o, and the section of maximum positive moment
by putting dM/dx=o. The maximum positive moments are

found to have the following values:

rWg«'Z' tI^«'^ tHi'^^ and ^VsV^^^

For any particular, case the beam may now be investigated by

the use of the shear and moment formulas. It is seen that the

greatest moment is that at support 2, and hence this need only

be used in the flexure formulas.

The reactions at the supports are readily found from the

values of the adjacent shears. Thus, for the above case i?i =

Vi = ^^wl, and R2=ilwl+^wl=^^wl. But perhaps a more

satisfactory method will be to find them directly from the equation

of moments. Thus Ril—^wP = M2, whence Ri = -^wl. Again

RiX2l+R2l—2wP = M3, whence i?2 = |fw/. From the symmetry

of the spans and loads, it is plain that R5=Ri and J?4 = i22-
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The equation of the elastic cun^e in any span is found by

inserting the expression for M in EI . 8^y/dx^ = M, and inte-

grating twice. In general, the maximum deflection in any span

will be found intermediate in value between those of a simple

beam and one fixed at its ends.

Prob. 68. In a continuous beam of three equal sp'ans the negative

bending moments at the supports are i^^wP. Find the inflection point,

the maximum positive moments, and the reactions of the supports.

Art. 69. Theorem of Three Moments

Let the figure represent any two adjacent spans of a continu-

ous beam having the lengths I' and I" and the uniform loads

«/ and v/' per linear unit. Let M', M", and M'" represent

the three unknown moments at the supports. Let V and V"
be the vertical shears at the right of the first and second sup-

ports. Then, for any section distant x from the left support

in the first span, the moment is, M = M'+ V'x—^wx^. Let this

be inserted in the general formula of the elastic curve. Integrating

twice and determining the constants by the conditions that

y = o when ;x;=o and also when x=l, the tangent dy/dx of the

angle which the tangent to the elastic curve at any section in

the first span makes with the horizontal is found to be given by,

24EI(dy/dx)-i2M'(2x-l')+ 4V'{5x2-l'^) -w'(4X^-l'^)

Similarly if the origin is taken at the next support, the tangent

of inclination at any point in the second span is,

24EI{dy/dx)= i2M"{2X-l")+4V"{3X^-l"^) -w"{40^ -l"^)

The two curves must have a common tangent at the support

where they meet, in order that the beam may be continuous

Hence make x=l' in the first equation and j(;=o in the second,

and equate the results, giving

i2M'l'+8V'l'^-3w'l'^=-i2M"l"-4V"l"^+w"r^

Now let V and V" be expressed by means of (67)" in terms of

M', M", and M'"; then this equation reduces to

M'l'-\-2M"{l'+l")+M"'l"= -iw'l'^-W'l"^ (69)

which is called the theorem of three moments for continuous
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beams under uniform loads. It was first deduced by Clapeyron

in 1857 and is hence sometimes called Clapeyron's theorem.

This theorem shows how the moment M" at any support

is connected with moments at the preceding and following

supports. When all spans are of the same length / and have

the same load w per linear unit, the theorem becomes,

M'-\-^"+M"'=-^f (69)'

which applies to the most common cases in practice. It must

be noted, however, that these theorems of three moments are

only valid when the beam is of constant section area and when

all the supports are on the same level, since these conditions

have been introduced into the algebraic work by taking I as

constant, and by taking y as zero for all supports.

M' I' M" I" M'"

Sp - 2p S- ^, 7^. -^^

Fig. 69a Fig. 696

In any continuous beam of 5 spans there are 5+ 1 supports

and s— x unknown bending moments at the supports. For

each of these supports an equation of the form of (69) or (69)'

may be written which contains three unknown moments. Thus

there will be stated s— i equations, and the solution of these

will furnish the values of the 5— 1 unknown quantities.

The simplest case is that shown in Fig. 69&, where there

are two equal spans uniformly loaded, the left and right ends

of the beam resting upon the supports. Here M' and M'" are

each zerd, and the theorem (69)' gives M"= —\wP- The left

reaction R' is now found from R'l—^wP =M" to be R' = ^wl,

' and R'" has the same value ; hence each span of Fig. 69& is

in the same condition as that of a beam fixed at one end and

supported at the other.

Prob. 69. A continuous beam of two spans is uniformly loaded with

125 pounds per linear foot. The length of the first span is 18 feet and

that of the second span is 12 feet. Compute the moment at the middle

support, and the three reactions.
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Art. 70. Equal Spans with Uniform Load.

Consider a continuous beam of five equal spans uniformly

loaded. Let the supports, beginning on the left, be numbered

I, 2, 3, 4, 5, and 6. From the theorem of three moments an

equation may be written for each of the supports at which

moments exist; thus,

for support 2, Mi+^M2+Mz= —\wl^

for support 3

,

M2+^M^+ Af4= —\wP
for support 4, Ms+4M^+M5= —^wP
for support 5, Mi+4M5+M6= —^wP

Since the ends of the beam rest on abutments without restraint

Mi =M^ = o. Hence the four equations furnish the means

of finding the four moments Mi, M3, Mi, M5. The solution

may be abridged by the fact that Mg = M5, and M3 = Mi, which

is evident from the symmetry of the beam. Hence,

M2=M5= —i-^wP M3=Mi=-^P
From formula (67)" the shears at the right of the supports are,

Vi=i^l V2=l%wl F3=H«'^ etc.

From (67)' the moment for any section in any span may now

be foimd as in Art. 68, and by the methods there indicated the

complete investigation of any special case may be effected.

SFoments at Supports

,
_for Equal Spans,
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each horizontal line the supports are represented by squares

in which are placed the coefficients of —wP. For example,

in a beam of 3 spans there are four supports, and the bending

moments at those supports are o, —f\wP, —^wP, and o.

The shears at the supports are also shown in the following

table for any number of spans less than six. The space repre-

senting a support gives the shear on the left of the support in

its left-hand division and the shear on the right of the support

in its right-hand division. The sum of the two shears for any

support is, of course, the reaction of that support. For example,

in a beam of five equal spans the reaction at the second sup-

port is Ifw^.

Shears at Sapports

^01Equal Spans,

Fig. 706

It will be seen on examination that the numbers in any obUque

column of these tables follow a certain law of increase by which

it is possible to extend them, if desired, to a greater number of

spans than are here given.

As an example, let it be required to select a rolled steel I beam

to span four openings of 8 feet each, the load per span being

44 000 pounds and the greatest horizontal stress in any fiber to be

15 000 pounds per square inch, The required beam must satisfy

the flexure formula 5 . 7/c = M, or it must be of such size that

I/c = M/i^ooo. From the table it is seen that the greatest

negative moment is that at the second support or -^wP, and

the maximum positive moment in the first span is V-^/2W =

:^ssivP and that in the second span is M2+V2^/2iv = ^i-gwP.
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The greatest value of M is hence at the second support; then,

//c=3X44 000X8X12/28X15 000=30.2 inches^

and from Table 6 it is seen that the light 12-inch beam, for

which I/c is 36.0, will most closely satisfy the requirements.

Prob. 70a. Find several shears and moments for three equal spans

,
uniformly loaded, and draw the shear and moment diagrams.

Prob. 706. Select the proper steel I beam to span three openings of

12 feet each, the uniform load on each span being 6 000 pounds and
the greatest value of 5 to be 12 000 pounds per square inch.

Art. 71. Unequal Spans and Loads

As the first example, consider two spans with lengths h, h,

and uniform loads per linear unit Wi and W2. The theorem of

three moments in (69) then reduces to,

from which' the bending moment at the middle support is known.

When there is no load upon the second span W2 is zero. As a

particular case let h = /\.o and ^2 = 30 feet, Wi = 2io pounds per

linear foot, and «;2 = o; then Af2 =—24000 pound-feet. The
reaction Ri is found from Ri X40—^X2ioX4o2 =M2, which gives

-^1 = + 3600 pounds. The reaction Rz is found from i?3 X 30 = M2,
which gives i23=—800 pounds. The shear passes through

zero in the first span at the point for which Ri~wx=o, which

gives x = Ri/'W, and the maximum positive moment is then

M = Ri^/2W==^ogoo pound-feet. From these values the shear

and moment diagrams in Fig. 71a are constructed.

Next consider three spans having the lengths h, I2, and I3,

and loaded uniformly with Wi, W2, Ws. The moments at the

second and third supports are M2 and M3. Then from- (69),

2M2(h+l2)+M3}2'=-iwih^-iwj2^

If2/2+ 2^3(^2+ ^3)= -i«'2^2^-i«'3^3^

and the solution of these gives the values of M2 and Ms- A
very commoA case for swing drawbridges is that where two end

spans are equal and the load uniform throughout, or h = l,li = h =
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al, and Wi = W2 = W3 = w. For this case the solution gives,

Jf2= -Ki +a^)«'/V(3+ 2a)

For example take a swing-bridge where the two end spans are

each I20 feet and the middle span is 24 feet, this being a con-

tinuous girder when closed. Here a = 120/24= 5, and M2 =

— 2.423W/2, which is the moment at supports 2 and 3 due to

live load over all spans. When live load covers only the first

span -0)2 may be made zero, and the moments be found by the

solution of the above equations. In Part IV of Roofs and

Bridges these cases of loading are fully discussed.
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Fig. 71o Fig. 716

Whatever be the lengths of the spans or the intensity of the

uniform loads, the theorems of three moments in Art. 69 furnish

the means of finding the bending moments at the supports.

Then by the methods of Art. 67 shears and moments at every

section may be computed and the degree of security of the beam

be investigated by the flexure formula (41). Finally, if the

material is not stressed beyond its elastic limit, formula (45)

may be used to determine the deflection.

Prob. 71a. A continuous beam of three spans is loaded only

in the middle span, as in Fig. 716. Find the reactions of the end

supports due to this load.

Prob. 716. A heavy 12-inch steel I beam of 36 feet length covers

four openings, the two end ones being each 8 feet and the others each

10 feet in span. Find the maximum moment in the beam. Then
determine the load per linear foot so that the greatest horizontal unit-

stress may be 15 000 pounds per square inch.

Prob. 71C. For the case of three spans let the first and third spans

be each 80 feet long. Find the length of the middle span so that the

moment shall be zero at the middle of that span, the load being

uniform throughout.
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Art. 72. Spans with Fixed Ends

The theorem of three moments may also be used to determine

the bending moments at the supports when the ends of the con-

tinuous beam are horizontally fixed in walls. If the number

of spans be two, there are three unknown moments and hence

three equations are to be written for four spans; in these the

lengths of the first and last spans are to be made zero and thus

the elastic curve will be made horizontal at the ends of the beam.

The following example will illustrate the procedure.

s—

A

A A—

s

12 3 4 5

Fig. 72o Fig. 726

Let there be two spans of lengths I2 and I3 with ends hori-

zontally fixed, as in Fig. 72a. In Fig. 72b let the restraint of

the walls be replaced by the span /i on the left end and the span

li on the right end, these spans being taken as unloaded. From

(69) the equations for the three supports 2, 3, 4, are,

for support 2, Mili+ 2M2(li+ l2)+Msl2=—h''2h^

for support 3, M2I2+ 2Mz{l2+l3)-{-M4z= —^2h^—hv3h^
for support 4, ^¥3/3+ ailf4(/3 +li)+M^i= -{wsk^

Now, Ml and M5 are zero since the ends are supposed to merely

rest on the supports i and 5. By making /i = o the points i and

2 become consecutive, which renders the elastic curve horizontal

at 2 ; also by making ^4=0 the points 4 and 5 become consecutive

which renders the elastic curve horizontal at 4. As a special

case let l2 = h = l and 'W2 = Wz = w, so that the two spans are equal

and have the same uniform load; then from symmetry it is known

that Mi is equal to M2, so that the equations become,

2 ikfg+M3= -iwP 2M2+ 4Af3= -hvP

from which are found M2 tW^ ^^^ -^3 ^"wP- As

another special case let the two spans be equal and the uniform

load be only on the first span or W2 = w and 103 = 0; then the

equations are,

2M2+M3=-^ M2+4M3+Mi=-iwl^ M3+2Mi=0
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from which the moment at the left fixed end is M2= —-i^wP

that at the middle support is M3= —-^-^wP, and that at the right

£xed end is Mi= +:^wP.

The fixing of the ends fenders the bending moments smaller

than those of beams with supported ends and hence causes an

increase of strength, while the stiffness is also made greater.

Continuous beams in the floors of buildings often have their

ends fixed in walls. When the spans are two in nxunber and

of equal length, each span is in the same condition, under uni-

form load, as one with both ends fixed, since the elastic curve

is horizontal over the middle support.

Prob. 72a. Draw the shear and moment diagrams for a beam of

two equal spans with fixed ends, the first span being unloaded and the

second covered with uniform load.

Prob. 12h. Using the theorem of three moments for concentrated

loads given in the next article, deduce the moments for Fig. 72o caused

by a load P at the middle of the first span.

Art. 73.' Concentrated Loads

Thus far only uniform loads upon one or more spans have

been discussed, but all the methods given are applicable to con-

centrated loads, provided the moments at the supports due to

those loads can be found. By a process of reasoning similar

to that m Art. 69, a theorem of three moments for such loads

can be deduced, and it will here be stated without the algebraic

work of demonstration. As before the beam is to be of constant

section throughout its length and all supports are to be upon

the same level.

Let V and I" be the lengths of any two consecutive spans and

M', M", and M'" the moments at the three supports. Let P'

be any load upon the first span at the distance id' from the first

support, and P" any load upon the second span at the distance

kI" from the second support, k being any fraction less than unity

and not necessarily the same for the two loads. Then the theorem

of three moments is,

M'l'-Y 2M"(l'+ l")+M"'l"= -P7'2(k- k3) _p'7'/2(2«_3«2+ «3)



Art. 73 Concentrated Loads 181

which is to be used in the same manner as those of Art. 69. If

there is no load on the span V, then P' is zero ; if there is none

on the span /", then P" is zero.

To illustrate the application of this formula, let there be

two equal continuous spans, as in Fig. 73ffl, with a load P on

the first span. Here P' becomes P and P" is zero, and since

there are no moments at the ends, the theorem gives M2 =

-\Pl{K-i^). To find the left reaction, R]l-P{l-id) = M2
from which .Z?i = JP(4— 5/c+k3). When the load is at the middle

of the span, k is ^, and M^— —^^Pl and Ri = IfP. The reaction

at the right end is found from i? 3/ =-3^2, whence i?3= —\P{k~
K^) or i?3= — /j-P; hence the right end must be prevented from

rising irom the support in order that this negative reaction

can prevail. If that end is not fastened, Rz is zero and the

reaction i?i is P(i — k) as for a simple beam.

I
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From the above results and from the definitions of shear

and moment in Arts. 37 and 38, the shear and moment- dia-

grams may be drawn, as in Fig. 73a. The inflection point is

fotmd from Rix—P{x^ kI) = o, whence its position is given by

a;=4//(5 — k2); when k=i the load is at the middle support

and x—l; when k=o the load is at the left support and x=^l.

Hence the inflection point for a load in the first span always

lies on the last fifth of the span.

When there are loads on both spans, as in Fig. 73 &, the moments

due to both may be found from the theorem, or the moments

and reactions due to each may be separately determined and

the final moment found by addition. Thus, if each load is at

the middle of the span, the reaction R\ due to P2 is known from
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the value of the reaction R3 due to Pi; hence for both loads

i?i = ||Pi-^V-P2, so that, if Pi and P2 are equal Ri is +^^P.

The theorem of three moments above given was deduced in

1865 by Bresse, and from it the theorem of Clapeyron (Art. 69)

for uniform loads is readily derived. Let u/ be the load per

linear unit on the first span and P' be a small part of this uni-

form load extending over the distance d{Kl), then P' is to be

replaced by wd{id) and P'l'^(K—ifi) becomes 'w'l'^(K—i^)dK.

Integrating this between the limits i and o, the imiform load

covers the whole span and the function is ^ii/l'^ as in Clapeyron's

theorem.

An abbreviated method of finding the moments at the sup-

ports, without writing the theorem of three moments for each

support, was devised by the author in 1875. See London Philo-

sophical Magazine, September, 1875; or Roofs and Bridges,

Part IV. This method can also be directly applied to cases

where one or both ends are fixed. Continuous beams with fixed

ends are, however, rarely used under the action of a live load.

Prob. 73. A continuous beam has four spans of 6, 8, 8, 6 feet

length; the ends resting upon abutments. Find the left reaction due

to a load of i 000 pounds at the middle of the second span.

Art. 74. Supports on Different Levels

All cases of flexure thus far considered have been for sup-

ports on the same level, except that of fixed beams in Art. 64.

The general remarks there given regarding the effect of changes

of level of the supports apply also to continuous beams. Indeed

a slight depression of one support below the level of the others

may cause great changes in the moments and stresses through-

out the beam.

Let Fig. 74a represent two consecutive spans of a continu-

ous beam having the lengths I' and I" ; let the axis of abscissas

be horizontal, h', h", and h"' being the heights of the three sup-

ports above this axis. Let the beam be anchored to the sup-

ports so that its lower surface is compelled to touch them under

all circumstances. This constraint produces moments at the
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supports, the magnitude of' which will depend upon the size

and shape of the beam, represented by the moment of inertia /,

and upon the stiffness of its material, represented by the modulus

of elasticity E.

By proceeding as in Art. 69 a theorem of three moments

for this case may be deduced. In the first span, y = h' when

x= o and y^^h" when x=l'. The value of dy/dx for the first

and second spans hence differs from those of Art. 69 in contain-

ing the quantities h', h", h'". By equating the values of Sy/dx

for the middle support, there will be found,

/I,"— },' h"— h"'\
M'l'+2M"{l'+l")+M"'l"= -iwT^-iw"li"^-6Eir +

j

which is the theorem of three moments for uniform load and

supports on different levels. This may be extended to include

concentrated loads by inserting the functions of P and k given

in the last article.

Fig. 74a Fig. 746

To show the method of application of this theorem, take

two equal continuous spans with supported ends, and let the

middle support be lowered the distance / below the level of the

other supports. Then /' = /" = / and M' =M'" = o, also h" -h'

=

h' —h"'= —f. Let the load be uniform throughout, so that

•u/ = iji/'= w. Then there results,

which shows that the negative bending moment at the middle

support is decreased by the circumstance of its depression. When

/ has the value wl'^/2/\EI, there is no moment at this support

and each span is like a simple beam. When / has a greater

value, the moment becomes positive. If the beam be one of

rolled steel weighing 40 pounds per foot and the spans be 16

feet long, the moment at the support due to the weight of the
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beam is —iwP= — i 280 pound-feet. Now let the middle sup-

port be depressed^ 0.1 inches below the level of the others; then

since 7=158.7 inches* from Table 6, the moment due to that

depression is ^Elf/P = -f- 3 230 pound-feet, so that this slight

depression entirely changes the character of the stresses through-

out the beam.

Continuous bridges are subject to all the uncertainties of

continuous beams in regard to the efifect of changes of level of

the supports, and hence their use has been almost entirely aban-

doned. Continuous beams are used only for short spans as is

the case with railroad rails, and in floors where there is little

liability to change in level of supports.

In conclusion it may be noted that the above theorem of

three moments furnishes a very convenient method for finding

the elastic deflections of beams. As an example, take the case

shown in Fig. 74&, where it is desired to find the upward deflec-

tion at the middle of the span / due to a uniform load wm on the

overhanging end m. Let the middle point be marked 2 and

the supports i and 3; the moments at these points are Mi = o,

M2= —\'wm?, if3= —\wnP. These are to be inserted in the

formula in place of M', M", M'"; also l' = \l, r =
J/, and

3t/ = 'ze/' = o since there is no load on the span considered. Also

making h' = h"' = h, the deflection is h2— hi and the formula

now gives its value as •wm^l/^2EI.

Prob. 74a. A continuous beam of two equal spans, uniformly loaded,

has its supported ends on the same level. How far must the middle

support be depressed so that the negative moment over it may be

numerically equal to the maximum positive moment in each span ?

Prob. 746. Find, by the above method, upward deflection of the

overhanging end in Fig. 746, due to a uniform load over the span /.

Art. 75. The Theory or Flexure

The theory of flexure, presented in this and the preceding

chapters, is called the common theory, and is the one' universally

adopted for the practical investigation of beams. It should not

be forgotten, however, that the axioms and laws upon which
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it is founded are only approximate and not of an exact nature

like those of mathematics. The law regarding the proportionality

of stress and deformation is, for instance, only roughly approxi-

mate for brittle materials. The flexure formula S . I/c =M has

been established from this law and from the observed fact that a

vertical line, drawn upon the side of the beam before flexure,

remains a straight line after flexure.

When the load on a beam is sufficient to cause its rupture,

and the longitudinal unit-stress 5 is computed from the flexure

formula, a disagreement of that value with those found by direct

experiments on tension or compression is observed. This is

often regarded as an objection to the common theory of flexure,

but it is in reality no objection, since the laws upon which the

flexure formula is founded are only true provided the elastic

limit of the material is not exceeded. Experiments on the deflec-

tion of beams furnish, on the other hand, the most satisfactory

confirmation of the theory. When the modulus of elasticity E
-is known by tensile or compressive tests, the formulas for deflec-

tion are found to give values closely agreeing with those observed.

Indeed so reliable are these formulas that it is not uncommon

to use them for the purpose of computing E from experiments

on beams. When, however, the elastic limit of the material

is exceeded, the computed and observed values fail to agree.

Certain false theories of flexure have been proposed from

time to time, the one best known being that in which it is assumed

that the moment of the horizontal forces on one side of the-neutral

axis is equal to the moment of those on the other side. Since

the principles of static equilibrium furnish no condition of this

kind, the formulas established are, of course, without value.

Although it is xmfortunate that the flexure formula does not

theoretically apply to the rupture of beams, it is better to use

it for such cases in connection with experimental constants

(Art. 52) than to employ any formula which disagrees with the

fundamental principles of statics. Such is the method in general

practice, and on the whole it may be concluded that the com-

mon theory of flexure is entirely satisfactory and that it is suffi-
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dent for the investigation of most questions relating to the strength,

and stiffness of beams. For materials like cast-iron and con-

crete it is possible to deduce formulas, which apply more closely

than the common flexure formula, by using a parabola instead

of a straight line to represent the variation of the stresses above

or below the neutral axis (Art. 52). These formulas include

constants which give the relation between stress and deforma-

tion, so that each material requires a different flexure formula.

Although such formulas are theoretically more correct than

(41) for stresses beyond the elastic limit, it does not appear that

they give better results for rupture than are obtained by using

(41) with the values of Sf found by experiment.

In all the examples thus far discussed, the load applied to

the beam is parallel to one of the principal axes of inertia of the

cross-section and its resultant coincides with that axis. When
this is not the case, the flexure formula (41) must be modi-

fied in the manner indicated in Art. 166; such imsymmetric

arrangement rarely occurs except in the purlin beams of roof

trusses.

The actual internal stresses in beams are far more complex

than those considered in the common theory, because the ver-

tical shears combine with the horizontal stresses; discussions

of the apparent and true stresses are given in Chapters XI and

XV. The influence of shear on the deflection of beams is investi-

gated in Art. 125. All the formulas and methods of the pre-

ceding chapters apply only to beams in which the material is.

the same throughout the section area. When different materials

are combined to form a beam, the flexure formula must be modi-

fied so as to take into account their different degrees of stiffness,

and this will be done in Chapter XII.

The theory of beams arose from the discussions of Galileo in

the seventeenth century, but it was not until about 1825 that the

flexure formula and the general equation of the elastic curve

were established by Navier. Since that time great progress has

been made in considering the flexure of beams under impact

and in applying the principles of work and energy to their dis-
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cussion; some of these investigations will receive attention in

future chapters.

Prob. 75a. A beam of three spans, the center one being / and the

side ones nl, is loaded with P at the middle of each span. Find the

value of n so that the reactions at the end may be one-fourth of the

other reactions.

Prob. 756. Consult Engineering News, vol. xviii, pp. 309, 352, 404,

443; vol. xix, pp, II, 28, 48, 84; and vol. xxii, p. 121. Write an

essay concerning certain erroneous views regarding the theory of flex-

ure which are there discussed.

Prob. 75c. Procure several sticks of good timber, each JXf inches,

and of lengths about 8, 12, and 16 inches. Devise and conduct experi-

ments to test the following laws: First, the strength of a beam varies

directly as its breadth and directly as the square of its depth. Second,

the stiffness of a beam is directly as its breadth and directly as the cube

of its depth. Third, a beam fixed at the ends is twice as strong and

four times as stiff as a sunple beam, when both are loaded at the

middle.
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Chapter IX

COLUMNS OR STRUTS

Art. 76. Cross-Sections of Columns

When a prism has a length longer than about eight or ten

times the least side of its cross-section, it is called a 'column

'

or 'strut'. When the length of the prism is only four or six

times as long as the least side of its cross-section, the case is one

of simple compression the constants for which are given in Art. 5.

Under simple compression the failure occurs for brittle mate-

rials by oblique shearing and for plastic materials by enlarge-

ment and cracking (Art. 18). In the case of a column, how-

ever, failure is apt to occur by a sidewise bending which causes

flexural stresses. The longer the column the greater is the lia-

bility to lateral flexure.

Wooden columns are usually square or round, and when

of large size they may be built hollow. Cast-iron columns are

usually roimd and hollow. Wrought-iron columns were built

prior to 1900 of a great variety of forms, but structural steel

has since been almost entirely used. Rolled I beams may be

used, but most steel columns are formed by riveting together

channels, angles, and plates (Art. 44). Columns are exten-

sively used in buildings and bridges. A piston-rod of a steam-

engine, or the parallel rod of a locomotive, is a column when

it is under compression. It is clear that a square or round sec-

tion is preferable to an unsymmetrical one, since then the Ha-

bility of the column to bend is the same in all directions. For

a rectangular section, the plane of flexure will evidently be per-

pendicular to the longer side of the cross-section, and in gen-

eral the plane of flexure will be perpendicular to that axis of

the cross-section for which the moment of inertia is the least;

for Art. 56 shows that the deflection of a beam varies inversely

as /. In designing a column it is hence advisable that the cross-
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section should be so arranged that the moments of inertia about

the two principal rectangular axes should be closely equal.

For example, let it be required to construct a column with

two I beams, as in Fig. 76a, the pieces connecting the flaJiges being

small and light so that they add nothing to stiffness or strength.

Let the beam be the light 15-inch size weighing 42 pounds per

foot; then Table 6- gives 71 = 441.7 for an axis perpendicular

to the web and 72=14.62 inches* for an axis along the middle

line of the web; also the section area 0=12.48 square inches.

Let it be required to find the distance x between the centers

of the webs so that the moments of inertia with respect to axes

through the center of gravity of the column section shall be

equal. For the axis perpendicular to the webs, 7=2X441.7;
for the axis parallel to the webs, 7= 2 X 14.62 + 2 X 12.48 (^a;)^.

Equating these two values and solving for x gives ic= 11.70 inches.

^

Fig. 76a Fig. 76J Fig. 76c

As a second example, take the section in Fig. 76&, which is

formed by two channels and two plates, the rivets being omitted

in the sketch. Each channel is 10 inches deep and weighs 35

pounds per foot, and each plate is x inches long and ^ inch thick.

Using Table 9, the moments of inertia of the column section

with respect to the two axes through its center of gravity are,

7= 2(iis.s+tV^X 0.53+0.5.^X5-25^)

/=2[4.66+io.29(i»-o.7o)2+-ji^Xo.5a;3]

Placing these expressions equal, the value of x is found to be

between 10 and 10^ inches. This section is suitable only for a

column less than 6 feet in length, as the riveting of the plates

to the angles could not be done for a long column.

Fig. 76c is a section frequently used for bridge members,

there being but one plate connecting the two channels. Here
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the center of gravity of the section lies above a line drawn through

the middle of the webs and its position is to be found by the

method of Art. 42. Then by the principles set forth in Art. 43,

the moments of inertia with respect to the two rectangular axes

through this center are to be computed, and that which is the

smallest is to be used in the column formulas given in the follow-

ing pages.

Prob. 76a. Two joists, each 2X4 inches, are to be placed 6 inches

apart between their centers, and connected by two others, each 8 inches

wide and x inches thick, so as to form a hollow rectangular column.

Find the proper value of x.

Prob. 766. Let the section in Fig. 76c consist of a plate, fX 12 inches,

and two channels, each 12 inches deep and weighing 20J pounds per

linear foot. Compute the moments of inertia with respect to the two

axes through the center of gravity.

Art. 77. Definitions and Principles

When a short prism of section area a is under compression

in the direction of its length and the resultant force P acts through

the centers of gravity of the end sections, the internal stress is

uniformly distributed over the section, and hence the compres-

sive unit-stress 5 is P/a. For a long prism, or column, this is not

always the case, for any sidewise deflection will cause flexural stress

which will render the unit-stress on the concave side of the column

greater than P/a and that on the convex side less than P/a.

Hence for any given column, the load P should be taken smaller

for a long one than for a short one, since evidently the liability

to bending increases with the length.

The 'Axis' of a column is the line passing through the centers

of gravity of the cross-sections. When the column is straight,

the axis is a straight line; if it bends laterally, the axis is the

elastic curve. An 'axial load' is one having its line of action

coinciding with the centers of gravity of the two end sections;

the term 'concentric load' is used by some writers for this case

The load P is regarded as axial in the greater part of this chapter

this being the most common case in practice.
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The length of a column is indicated by / and the least radius

of gyration of its cross-section with respect to an axis through

the center of gravity of that section by r. The value of r is found

from the equation ar^ = / (Art. 43) where a is the section area

and I is the least moment of inertia; for example, if the section

is a circle of diameter d, the value of a is \Kd^ and that of I is

•sV'i^^* (Art. 43) ; hence the radius of gyration of a circular section

is \i. For a rectangle having its least side A and its width h,

the radius of gyration is found from r^ = -r!sbd^/hd=i[jd^ whence

r—o.2%()d. For sections of rolled beams and channels, the values

of r for two rectangular axes are given in Tables 6 and 9, and

the least of these is the one needed in computations when a beam

or channel is to be used as a column.

It was shown in Art. 51, that a given section area a offers

greater resistance to flexure the further the material is removed

from the neutral axis. When a column bends laterally, flexural

stresses similar to those in a beam arise, and hence for columns

economy is also promoted by placing the material as far as prac-

ticable from the axis about which bending may occur; this is

done by making the radius of gyration as large as practicable.

The ratio l/r is called the'slendemess ratio ' of the column.

When l/r is less than about 25, the column is a short prism under

simple compression (Art. 5) ; when l/r is greater than about 200

the column is called long and failure occurs by lateral bending.

The columns generally used in engineering practice have slender-

ness ratios varying from 50 to 150.

The condition of the ends of columns exerts a great influence

upon their strength. 'Round ends' are those which are free to

turn upon the surfaces where they abut; Fig. 77a shows one

with spherical ends and also one where the compression is applied

through pins. ' Fixed ends ' are those subject to such restraint

that the tangent to the elastic curve remains vertical at the ends

when a lateral deflection occurs. Fig. 776 shows a column

with one end free to turn and the other fixed, and also one with

both ends fixed. Columns with both ends fixed are extensively

used in buildings and bridges. Columns with one or both ends
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hinged on pins are used in bridges and also in machines; the

piston-rod of a steam-engine is a case of a column with one end

fixed and the other hinged. The term 'round ends' generally

includes those which are free to turn on pins at the ends.

It is evident that a column with fixed ends is stronger than

one with round ends, and that a column with one end round and

the other fixed is intermediate in strength between these; this

is confirmed by all experiments. There is also another condi-

tion of ends which is called 'flat' and represented in Fig. 77c;

here the ends simply abut on plane surfaces without being fixed.

The strength of a column with flat ends is closely the same as

one with fixed ends when it is short, and about the same as one

, with hinged ends when it is long.

Fig. 77a Fig. 776 Fig. 77c

In the following articles the theory of columns will be developed

without considering the weight of the column itself. When a

column is in a vertical position, its weight brings a greater unit-

stress upon the base than that due to the load (Art. 27), but in

most practical cases this increase is small. When a column is

in a horizontal position, its weight causes flexure which increases

the stress on the upper side due to the direct compression, and

this case will be discussed in Arts. 101 and 102.

Prob. 77a. A round cast-iron column has the outer diameter di and

the inner diameter ^2- Find the radius of gyration of the cross-section.

Prob. 77b. An I beam 20 inches deep and weighing 65 pounds per

linear foot is used as a column. What length of column will give a

slenderness ratio of 220?

Art. 78. Euler's Formula for Long Columns

Consider a long column of section area a, having an axial

load P under the action of which a small sidewise bending occurs.
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The column is supposed to be perfectly straight before the appli-

cation of the load, but in practice this condition is not attain-

able, and the slightest deviation from straightness, or a lack of

homogeneity in the material, or even jars and shocks due to

surrounding objects, causes bending to occur when the load

P is sufficiently large. Even for a perfectly straight column,

it is found when P reaches a certain limit £ind a slight lateral

force is applied to cause lateral flexure, that the colimin remains

bent when this lateral force is removed. It is required to find

this value of P.

Fig. 78a Fig. 786

Let the column have round ends, as in Fig. 78a, and let I

be its length, I the least moment of inertia of its cross-section,

and E the modulus" of elasticity of the material. Take the origin

of coordinates at the upper end, and let x be measured down-

wards and y horizontal. The general equation (45) is regarded

as applicable to all bars subject to flexure, provided the bending

is slight and the elastic limit of the material is not exceeded.

For the case in hand the bending moment is M=—Py; hence

EI . ^y/dx^= —Py, and the integration of this gives,

To determine C, let/ be the maximum deflection at the middle

of the column and note that the tangent dy/dx=o when y=f;
hence C=PP, and the equation may be written,

Integrating this, and determining the constant by the condi-"^

tion that y = o when x=o, the equation of the elastic curve is.
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x= (EI/P)i arc sm{y/f )
or y=f sm(P/Er)ix

The curve represented by this equation must also fulfill the

requirement that y = o when x = l. This condition is satisfied

by making {P/EI)H equal to n or some integral multiple thereof;

for, if V is any integer, then siniw= o. Accordingly,

{PIEI)H^VK or P=v^K^EI/P (78)

which is Euler's formula for long columns. When P has this

value, the long column remains bent at any deflection / which

may happen to occur. There is no way of finding / from the

above investigation since it cancels out of the equation; that

is, the deflection is indeterminate.

Inserting the value just found for (P/EI)^ in the equation

of the elastic curve, it reduces to the form,'

x= (l/vTc) arc sm(y/f) or y-=fsmvn{x/l)

By discussing this equation according to the methods of .An-

alytic Geometry there are derived three curves for v=i, v = 2,

and v = 3, as shown in Fig. 786. For v = i the curve is entirely

on one side of the axis of x; for v = 2, it crosses that axis at the

middle; for v = 3, it crosses at \l and ^l. Each of these cases

is liable to occur for a coliunn -with round ends, but the first

is the most dangerous case since the lateral deflection is then

the greatest. Hence, making v=i in (78), there is found,

P=n'^EI/P or P/a=TfiE{r/r)^

which is Euler's formula for columns with round ends. The

second form is obtained from the first by using / = ar^, where r

is the least radius of gyration of the cross-section (Art. 77).

A column with one end fixed and the other round is closely

represented by the portion h'b" of the second case, V being the

fixed end where the tangent to, the curve is vertical. Here v = 2

and the length h'h" is three-fourths of the entire length; hence,

replacing / in (78) by il it becomes,

P=2\n:^EI/P or P/a=2\it^E(r/l)^

which is Euler's formula for long columns having one end fixed

and the other end round.
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A column with fixed ends is represented by the portion c'c"

of the third case. Here v = i, and the length c'c" is two-thirds

of the entire length; hence, replacing I in (78) by |/,

P=A-K^EI/f or P/a=^n^E{r/r)^

which is Euler's formula for long columns with fixed ends.

From this investigation it appears that the relative strengths

of long columns of the three classes are as the numbers i, 2J

and 4 when the lengths are the same, and this conclusion is

approximately verified by experiments. A general expression

for Euler's formula for long columns may now be written, namely,

P=/££7//2 or P/a=[iE{r/Tf (78)'

in which the number /t is n"^ for round ends, /^n^ for fixed ends,

and 2\tz^ for one end round and the other end fixed.

Another kind of column is that which is fixed at one end

and entirely free at the other, like a vertical post planted in the

ground. This case is represented in Fig. 78& by the upper half

of the case for which v = i, by the upper fourth of the case for

which v = 2, and by the upper sixth of the case for which 1^ = 3.

Using either case, and letting I be the length of the column under

consideration, there is found,

P=^^EI/P or Pla=^\iz^E{rlTf

and hence the number /i in (78)' is \n^ for a long column fixed

at one end and entirely free at the other. Accordingly a column

of this kind can carry only one-fourth of the load of a column

with two round ends.

The value of P in Euler's formula gives the axial load which

holds the column in equilibrium when it has become laterally

deflected. If the load is less than this value of P, the coluran

will return to its original straight position. If the load is slightly

greater than P, the bending increases until failure occurs-

Euler's formula is hence the criterion of indifferent equilibrium,

or the condition for the failure of a column by lateral flexure.

Euler's formula is but little used in engineering computa-

tions, except in Germany. When so used the value of P com-
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puted from the formula is to be divided by a factor of safety

in order to give the safe load on the column. For example,

take a rolled steel I beam 15 inches deep which has a least radius,

of gyration of 1.08 inches; when such a beam is used as a column

24 feet long with fixed ends, the ratio l/r is 267, and approxi-

mately P/a =4X 10X30 000 coo/2672 = 17 000 pounds per square

inch. Hence with a factor of safety of 5, this column should

be loaded with only about 3 400 pounds per square inch, whereas

a short block of the same material might bear 60 000/5 =

12 oco pounds per square inch.

Prob. 78a. A solid steel column with round ends is 6 inches in

diameter and 37 feet long. Compute the axial load which will cause

it to fail by lateral flexure.

Prob. 786. A square wooden column with fixed ends is 20 feet long

and carries a load of 9 500 pounds. Compute its size so that it may

have a factor of safety of 10 by Euler's formula.

Art. 79. Experiments on Columns

Although Euler published his formula in 1757 and Lagrange

gave a more satisfactory discussion of it in 1773, it was not until

after 1825 that its conclusions began to be used in practical

investigations. This formula shows that the load P which

causes the failure of a long colimin is inversely proportional to

the square of its length. Hodgkiiison in his experiments made

about 1840 observed that this was closely true for wrought-iron

columns, and only approximately so for cast-iron ones. Since

for a solid cylindrical coltimn I = -stn:d^, the load P should be

proportional to the fourth power of the diameter, and Hodgkin-

son observed that this ratio was a little too high. He accordingly

wrote for each kind of columns the analogous formula P = Q . d'/l^

and determined the constants Q, a, /? from the results of his

experiments, thus producing empirical formulas.

Let P be the load in gross tons which causes failure, d the

diameter of the column in inches, and I its length in feet. Then
the empirical formulas deduced by Hodgkinson for solid cylin-

drical columns are,
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L-ast iron
| P=.44.2(i3.5/;i.63 for flat ends-

„T , . T (.P=42(i^"''V^2 for round ends
Wrought Iron

{ pj^^^^z.^'^j^p for flat ends

These formulas indicate that the ultimate strength of flat-ended

columns is about three times that of round-ended ones. The
experiments also showed that the strength of a column with

one end flat and the other end round is about twice that of one

having both ends round. Hodgkinson's tests were made upon

small columns and his formulas are not so reliable as those which

will be given in the following articles. For small cast-iron

columns however the formulas are still valuable. A flat end

may sometimes have more or less motion when the deflection

begins and hence a flat-ended long column is not as strong as

one with fixed ends.

After 1850 wrought iron slowly replaced cast iron as a struc-

tural material, and many tests of wrought-iron colunms were

conducted prior to 1890. The series of tests made by Christie

in 1883 for the Pencoyd Iron Works is of great value on account

of completeness as regards wrought-iron struts, since it included

angle, tee, beam, and channel sections. A brief description

and the principal results will here be given, but a fuller account

may be found in Transactions of the American Society of Civil

Engineers, April, 1884.

The ends of the struts were arranged in different methods:

first flat ends between parallel plates to which the specimen was

in no way connected; second, fixed ends, or ends rigidly clamped;

third, hinged ends, or ends fitted to hemispherical balls and

sockets or cylindrical pins; fourth, round ends, or ends fitted

to balls resting on flat plates.

The number of experiments was about three hundred, of

which about one-third were upon angles, and one-third upon

tees. The quality of the wrought iron was about as follows:

elastic limit 32 000 pounds per square inch, ultimate tensile

strength 49 600 • pounds per square inch, ultimate elongation

18 percent in 8 inches. The length of the specimens varied

from 6 inches up to 16 feet, and the ratio of length to least radius
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of gyration varied from 20 to 480. Each specimen was placed

in a Fairbaiiks testing machine of 50 000 pounds capacity and

the power applied by hand through a system of gearing to two

rigidly parallel plates between which, the specimen was placed

in a vertical position. The pressure or load was measured on

an ordinary scale beam, pivoted on knife-edges and carrying a

moving weight which registered the pressure automatically. At

each increment of 5 000 pounds, the lateral deflection of the column

was measured. The load was increased until failure occurred.

The following are the combined average results of these care-

fully conducted experiments. The first column gives the values

Ratio l/r of
Length to

Least Radius
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inch. From the results it will be seen that there is little prac-

tical difference between the strength of the four classes when the

strut is short. The strength of the long columns with round

ends appears to be about one-third that of those with fixed ends.

For values of l/r greater tha]3fj200, the ultimate loads are closely

inversely proportional to ^e squares of the lengths for round

ends, and approximately so for other arrangements of ends.

Euler's formula fairly represents the results of the tests on

the long columns. Taking £ = 25 ooo ooo pounds per square

inch and n"^ as 10, the formula for round-ended columtis becomes,

P/a— 250 000 ooo(r//)^= 250 000 000/ (l/r)^

from which the ultimate xmit-loads are computed,

for l/r= 220, 260, 300, 340, 380, 420

P/a= 5200, 3700, 2800, 2200, 1700, 1400

while the experiments give the ultimate unit-loads as,

P/a=5ooo, 3800, 2800, 2100, 1700, 1300

Since Euler's formula is deduced under the laws of elasticity,

it must be concluded that the elastic limit was not exceeded

when these long columns failed by lateral flexure.

50000

fiR^
fi40 000

; 30 000

I SO 000

310 000

^
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plotted from Euler's formulas. It is seen that there is a marked

disagreement between the experimental results and those found

from Euler's formula when Ijr is less than 200; this disagree-

ment is due to the circumstance that Euler's formula refers to

failure by lateral bending only, while for values less than 200

or 150 the failure actually occurred through the unit-stress on

the concave side of the column having exceeded the elastic limit,

so that the wrought iron became plastic (Art. 18).

Prob. 79a. A cast-iron cylindrical column with flat ends is to be 7

feet long and carry a load of 200 000 pounds with a factor of safety of

6. Compute the proper diameter.

Prob. 796. Let Euler's formula be written y=c/x^, where x and y

represent l/r and P/a and c is a constant. Discuss this curve and .

ascertain the points where it is parallel to the coordinate axes.

Art. 80. Rankine's Formula.

The columns generally employed in engineering practice

are intermediate in length between short prisms and the long

columns to which Euler's formula applies. They fail under ^

the stresses caused by combined flexure and compression, columns

of brittle material by oblique shearing on the concave side or

by tension on the convex side, and those of wrought iron and

steel by the flow of metal on the concave side after the elastic

limit has been surpassed. The ultimate unit-load P/a for these

columns is less than the compressive strength Sc for short prisms

and very much less than the values computed from Euler's

formula, as Fig. 79 shows.

When such a column is perfectly straight, an axial load P
produces the same unit-stress S=P/a on all parts of every sec-

tion area a. When any bending occurs, due to imperfections

of the material or to lack of straightness, the unit-stress on the

concave side becomes greater than P/a and that on the convex

side becomes less. Fig. 80a shows the flexure very much exagger-

ated; and it is clear that the flexure formula (41) will apply to

the discussion of the stresses caused by lateral bending. Let ^i

be the unit-stress produced by the flexure and P/a the average
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unit-stress due to the direct compression; then the total unit-

stress on the concave side is the sum oi P/a and Si, and failure

may be considered as occurring when this sum is equal to the

ultimate compressive strength of the material.

Fig. 80c

Let / be the length of the column, a its section area, / the

least moment of inertia, r the least radius of gyration of that

section, and c the distance from the axis of the column to the

remotest fiber on the concave side. In Fig. 806, the average

compressive unit-stress on any section is represented by cd, but

on the concave side this is increased to as and on the convex

side decreased to bt. The triangles pds and qdt represent the

effect of the flexure exactly as in the case of beams, ps indicat-

ing the greatest compressive and qt the greatest tensile unit-

stress' due to the bending. Let the total maximum unit-stress

as be denoted by S and the part due to the flexure be denoted

by5i. Then5 = P/a-f-5i, in which 5i is to be expressed in terms

of P from the flexure formula Si . I/c = M, where M is the bend-

ing moment due to P. Let / be the maximum lateral deflection

of the colimm; then the greatest value of M is Pf, and accord-

ingly Si = Pcf/I, or replacing / by ar^, the flexural unit-stress

Si = P/a .cf/r^- Accordingly, the greatest compressive imit-

stress on the concave side of the column is.

P P
S=-+-

a a r^ a\ r^)

By analogy with the theory of beams, as in Art. 56, the deflection/

may be regarded as varying directly as I'^/c. Hence, if ^ is a

number depending upon the kind of material and the condition



202 Columns or Steuts Chap. IX

of the ends of the column, it follows that,

a-^(-*ai or

which is Rankine's formula for the investigation of columns.

(80)

The above reasoning has been without reference to the arrange-

ment of the ends of the colunm. By Art. 78 it is known that

a long column with round ends must be one half the length of

one with fixed ends in order to be of equal strength, and that

a long column with one end fixed and the other round must be

three-fourths the length of one with fixed ends in order to be

of equal strength. Therefore, assuming that similar laws hold for

the shorter columns under consideration, let (f>i be the constant

for fixed ends, then the constant for round ends is 40i and the

constant for one end round and the other fixed is V'^i.

Values of S and <j> may be determined by making two experi-

ments on columns having different values of {l/r) and increasing

the loads until rupture occurs, thus obtaining different values

of P/a. From (80) two equations may be written containing

the experimental results and the two unknown quantities 5 and 0,

the values of which are then found by solution. Wide varia-

tions are found in the results thus obtained for 4> from experi-

ments on the rupture of different types of columns, but the fol-

lowing table gives average values which are extensively employed

in engineering practice

:

VALTTES of <}> FOR FORMtTLA (80)

Material
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These values of <j> will be used in the examples and problems of

the three following articles, and the value to be taken for 5 will

be ultimate compressive strength of the material for cases of

rupture and the allowable compressive unit-stress for cases of

design.

Euler's formula is not satisfactory for practical investigations

because it contailis no constant indicating the ultimate or work-

ing strength of the material and because it applies only to long

columns for which the ratio l/r is greater than about 200.

Rankine's formula, however, contains the constant S and applies

to cases for which the ratio l/r lies between 20 and about 150,

and these are the columns used in engineering practice. On
account of the many assumptions employed in deducing it, and

because the values of the number <p are derived from experiments,

the formula is empirical rather than rational, yet it is of very

great value. Its form satisfies the limiting conditions for short

and long prisms. For a short prism, l/r may be taken as zero,

and then S = P/a. For a long coliimn, imity may be neglected

in comparison with "<^(//r)^, and then P/a = Sr^/P(f); this is the

same in form as Euler's formula, for placing S/(f> equal to a con-

stant C it becomes P = Ca . r^/P. Rankine's formula is some-

times referred to as Gordon's formula, but Gordon used the least

thickness of the coliunn instead of the least radius of gyration.

Prob. 80a. Taking values of l/r as abscissas and those of P/a as

ordinates, discuss the curve of formula (80) and find where its tan-

gents are horizontal. Also locate its inflection point.

Prob. 806. Plot the curve represented by formula (80) for wrought-

iron columns with fixed ends, taking values of l/r as abscissas and

those of P/a as ordinates, and using 5 as 46 500 pounds per square

inch. Compare the plot with Fig. 79.

Art. 81. Investigation of Columns

The investigation of a column consists in determining the

maximum compressive unit-stress S from formula (80). The

values of P, a, I, and r are known from the data of the

given case, and <p is known from the average experimental
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values given in the table of the last article. Then the value

of the greatest unit-stress 5 is computed from,

^=7(^+ ^(7)') (81)

By comparing the computed value of S .with the ultimate com-

pressive strength and elastic limit of the material, the factor of

safety and the degree of stabihty of the column may be inferred.

For example, consider a hollow wooden column of rectangu-

lar section, the outside dimensions being 4X5 inches and the

inside dimensions 3X4 inches. Let the length be 18 feet, the

ends fixed, and the load be 5 400 pounds. Here P = 5 400,

a = 8 square inches, I = 216 inches, and
(f>
= -jtrVir- The least radius

of gyration is that with respect to an axis parallel to the longer

side of the section, and for this axis ^^ = ^(5X4^—4X3^)78 = 2.21,

and accordingly //r=i45. Substituting now all values in the

formula, there is found 5 = 5430 pounds per square inch, so

that the factor of safety is only about ij. The average unit-

stress for this case is the same as for a short prism or S=P/a=

675 pounds per square inch, which is a safe value since the factor

of safety is nearly 12. If the column is 3 feet long, the ratio of

slendemess is l/r= 24, and the formula, gives 5 = 805 pounds

per square inch, which corresponds to a factor of safety of 10.

As another example, consider a steel column 21 feet long

with fixed ends which is used in the upper chord of a bridge

under an axial compression of 240 000 pounds. Let the sec-

tion be that in Fig. 76c, which consists of a plate fX 16 inches,

and two channels each 12 inches deep and weighing 20^ pounds

per linear foot. From the principles of Arts. 42 and 43, with

the help of Table 9, the moment of inertia of the section with

respect to an axis through its center of gravity and perpen-

dicular to the webs is found to be 501.4 inches* and that with

respect to an axis through the center of gravity and parallel

to the webs is 663.9 inches*. The least radius of gyration then

is r= (501 .4/24.06)* = 4.56 inches, and hence the slendemess

ratio is V''=55-3- Using for ^ the value ^-siirirj the formula now

gives 5 = 11 200 pounds per square inch, so that the factor of
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safety is about 5.3 and the coliimn may be regarded as having a

degree of stability a little too low for heavy traffic.

The degree of reliability of values of 5 computed for columns

is very much less than of those computed for beams from the

flexure formula (41), since the column formula has a less reliable

foundation. Moreover it assumes that the load is truly axial

and the column perfectly straight before the application of the

load, and these assumptions cannot be perfectly realized. It

hence follows that factors of safety for compressive stress in

columns should be lower than those in beams and lower than

those for direct compression on short specimens.

Prob. 81a. A cylindrical wrought-iron column with fixed ends is

12 feet long, 6.36 inches in outside diameter, 6.02 inches in inside

diameter, and carries a load of 49 000 pounds. Find its factor of

safety.

Prob. 816. A wooden stick, 3X4 inches and 12 feet long, is used

as a column with fixed ends. Find its factor of safety under a load of

4000 pounds. If the length of the stick is only one foot, what is

the factor of safety?

Art. 82. Sate Loads for Columns

To determine the safe axial load for a column of given length

and cross-section, it is necessary to assume the allowable work-

ing unit-stress S. Then Rankine's formula gives,
,

,

P=o5/[i+ <^(//r)2]

in which is to be taken from Art. 80, and the slendemess ratio

l/r is to be computed from the given data.

For example, let it be required to determine the safe load

for a fixed-ended timber column, 3X4 inches in size and 10

feet long, so that the greatest compressive unit-stress 5 may be

800 pounds per square inch. Hence a = 12 square inches, 1=

120 inches, r^ = 4X 3^/1 2 X 1 2 = f , and P/r^ = 19 200 ; also ^ =

-j/^nr- Then the formula gives P = i 300 poimds for the safe load.

A short column of this size should safely carry P= 12X800=

9 600 pounds, or seven times as much as one of 10 feet length.
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As a second example let it be required to find the axial load

for a fixed-ended steel column 23 feet 6 inches long so that S may
be 12 000 pounds per square inch. Let the section be that in

Fig. 76c, the plate being f X16 inches and each channel 12 inches

deep and weighing 2o| pounds per linear foot. From the prin-

ciples of Arts. 42 and 43, with the help of Table 9, the least

radius of gyration of the section is found to be ^ = 4.56 inches,

so that the slenderness ratio is l/r= 61.8. Then Rankine's

column formula gives

P=24.o6Xi2 000 /fiH ^— 1= 250 500 pounds

which is the safe load for the given section. By using heavier

channels of the same depth a much greater load may be carried

without changing the outside dimensions of the section.

Prob. 82a. Find the safe steady load for a hollow cast-iron column

with fixed ends, the length being 18 feet, outside dimensions 4X5
inches, inside dimensions 3X4 inches.

Prob. 826. Find the safe load for the above steel column when the

channels are 12 inches deep and weigh 40 pounds per linear foot, all

other dimensions and requirements remaining the same.

Art. 83. Design of Columns

, When a column is to be selected or designed the axial load P
will be given, as also its length and the condition of the ends-

A proper allowable unit-stress 5 is assimied, suitable for the

given material under the conditions in which it is used, or the

value of S will be given in the specifications under which the

design is to be made. Then from formula (i), the section area

of a short column or prism is P/S, and it is certain that a greater

section area will be needed for the column. Next, let a cross-

section be assumed, bearing in mind that it will be more effective

the further the material be removed from the axis (Art. 77).

For this assumed cross-section a and r are to be determined, and

then 5 is to be computed from the column formula. If this

computed value agrees with the unit-stress assumed or specified,

a section has been designed which satisfies the conditions; if
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not, a new cross-section is to be assumed and 5 be again com-

puted; this process is to be continued until a satisfactory agree-

ment is secured.

For example, a hollow cast-iron rectangular column, with

fixed ends and i8 feet in length, is to carry a load of 6o ooo pounds

and the allowable unit-stress 5 is to be 15 000 pounds per square

inch. For a short length the area required would be four square

inches; assume then that about 6 square inches will be needed.

Let the section be square, the outside dimensions 6x6 inches,

and the inside dimensions 5^X5^ inches. Then a = 5.75 square

inches, l = 2i6 inches, r^=Si.$2 inches^, l/r= g2, and 4> = s-^^.

Substituting these in Rankine's formula, there is found for S
about 30 000 pounds per square inch, which is double the speci-

fied value, and hence the assumed dimensions are much too

small. Again, assume the outside dimensions as 6X6 inches

and the inside dimensions as 5X5 inches. Then a =11 square

inches, ^^ = 5.08 inches^, and l/r =^g6. Substituting these in the

formula, there is found for S about 15 700 pounds per square

inch. Since this is very near the required working stress, it appears

that these dimensions very nearly satisfy the imposed conditions.

Many other sections can also be found which will satisfy the

requirements, and the one to be finally selected will be that

which is most convenient and economical.

In some instances it is possible to assume all the dimensions

of the column except one, and then after expressing a and r in

terms of this unknown quantity, to introduce them into (80) and

solve the problem by finding the root of the equation thus formed.

For example, let it be required to find the size of a square wooden

column with fixed ends and 24 feet long to sustain a load of

ICO 000 pounds with a factor of safety of 10. Let x be the unknown

side; then a=x^a,nd r^=-t^x^, and the column formula becomes,

100000/
,

2i^^Xl2^ \

x^ \ 3oooXa;'^''

By reduction this leads to the biquadratic equation,

8a:*— I oooa;2=33i 776

and its solution gives 16.6 inches for the side of the column.
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In designing columns and beams, considerations of economy

are to be constantly kept in mind. For any given data, .it is

usually possible to arrange a large number of sections which

will satisfy the requirements regarding strength, and the most

-advantageous one of these is that which can be built at the low-

est possible cost. In architecture, considerations of beauty

are also to be followed in order that the eye may be pleased with

the view of the colimin. It is sometimes said that beautiful

forms are those of greatest strength, and this now and then hap-

pens to be the case, but beauty and economy are usually con-

tradictory elements.

Prob. 83. Compute the size of a square wooden column, 12 feet

long and having fixed ends, to carry an axial load of 50 net tons with

a factor of safety of 10. Compute also the size of the column for the

case of round ends.

Art. 84. The Straight-Line Formula

The column formula (80) was derived by Rankine about

i860 from older forms deduced by Tredgold and by Gordon,

in which the ratio l/d was used, d being tlie least thickness of

a rectangular section or the diameter of a circular section; Ran-

kine introduced the ratio llr and thus produced a formula appli-

cable to all kinds of cross-sections. This formula has been more

widely used than any other notwithstanding its empirical nature.

When it is compared, however, with the results of many experi-

ments, it is seen that in many cases these results may be repre-

sented by a straight line, within the limits of the ratio Ifr gen-

erally used, almost as well as by the curve of Rankine's formula.

On this basis the straight-line formula for columns was first

deduced in 1886 by T. H. Johnson.

On Fig. 84 are shown fifteen points which represent the aver-

age results of about sixty experiments made by Tetmajer on

struts of medium steel of different lengths and sizes, the ordinate

for each point giving the unit-load P/a which caused the failure

of the struts having the slendemess ratio Ijr corresponding to

its abscissa. The broken curve is that of Euler's formula and
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it is seen to fit the observations very well for values of l/r greater

than 150. For lower values of IJr the full straight line seems

to give a fair average representation of the observations, this

being drawn tangent to Euler's curve. It is required to deter-

mine the equation of this straight line.

Let y be the ordinate F/a and x the abscissa llr and S be

Ihe value of P/a when x is zero, or the distance from the origin

to the point where the straight line cuts the axis of ordinates.

Then the equations of Euler's curve and of the straight line are,

y= [lE/oe^ and 'y=S—Cx

in which the parameter C is to be determined by making the

straight hne tangent to the curve. By equating the values of y
in these two equations and also the values of the first derivatives

dy/dx, the ordinate and abscissa of the point of tangency are

found to be,

yi= i5 and Xi={^iiE/S)i

Inserting these in the equation of the straight line, the value of

C is found, and accordingly may be written,

c=^s{^ '-\' and -S-C
I

(84)
P

\T,jxEI a r

in which the number /i is n^ for round ends, 2\Tfi for one end round

and the other fixed, and /^ for fixed ends (Art. 78).

40 000

^30000

A20 000

I
^lo.coo

.0
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spending to the point of tangency. The above theoretic values

of n were not used in computing C, as his experiments indicated

that the numbers tc^, ifTr^, and 2'^n^ for round, hinged, and flat

ends respectively gave a closer agreement. It will be noticed

Constants for Formdxa (84)

Kind of Column
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be found fropi P/a^^iy ooo—go(l/r) pounds per square inch,

in which P is the direct dead-load compression on the post plus

twice the direct live-load compression; the values of 5 and C
here used are a little less than one-third of those given in the

table for round ends.

While the straight-line formula is sometimes slightly more

convenient than that of Rankine, it cannot be regarded either

as having so high a degree of validity or as satisfying so well

the results of experiments. It is hence advisable that the use

of this formula should be limited to cases in which specifica-

tions require it to be employed, and for rough approximate

computations.

Prob. 84. Solve Probs. 82a and 83 by the help of the straight-line

formula, applying the factors of safety to the values of 5 and C given in

the above table.

Art. 85. Other Column Formulas

Many attempts have been made to establish a formula for col-

umns which shall be theoretically correct, like the flexure formula

(41) for beams, when the material is not stressed beyond the

elastic limit. Although many column formulas have been proposed

which have been claimed by their authors to have a rational

basis, none of them has been so recognized by the engineering

profession as more satisfactory than the formula of Rankine.

For long columns all agree that Euler's formula is correct in

giving the load which causes failure by lateral bending, but for

the columns commonly used in practice, where the slendemess

ratio l/r lies between 30 and 150, a fully satisfactory formula

has not been established.

In 1873 Ritter proposed a formula to be used when the unit-

stress 5 does not exceed the elastic limit 5^, namely,

P _ S
a i + {Sj[iE){l/rf

in which P/a is the axial unit-load, E the modulus of elasticity

of the material, and the number // is n^ for round ends, 2\ir^

for one end round and the other fixed, and 47^2 for both ends
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fixed. This is seen to be the same in form as Rankine's formula,

the constant <j> having the value SJfiE. Using the average

values of S, and E given in Arts. 2 and 9, the values of
<f>

for

columns of different materials are,
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tion different from that of Crehore. These tables show that

values of Ffa computed for a given unit-stress 5 are greater

than those foimd from Rankine's formula; for instance, when

l/r=ioo and 5= 12 000 pounds per square inch, it gives

P/w=zx 000 for steel columns with fixed ends, whereas Rankine's

formula gives P/a = 8 500 pounds per square inch. In general

the formula gives working unit-loads which are from 20 to 30

percent greater than those allowable in good engineering prac-

tice and hence it cannot at present be regarded with favor. On
the other hand when applied to cases of rupture, it usually gives

values of P/a less than those shown from experiment and for

this reason it is also unsatisfactory.

The discussions of this chapter show that the theory of columns

stands upon a less rational basis than that of beams. The flexure

formula S.I/c=M has a sound theoretical foundation and,

for all cases where the elastic limit is not exceeded, it is found

to agree -with experiment. Euler's formula for long columns

has a sound theoretical basis and it also agrees with experiment,

but all other column formulas contain certain theoretic defects.

A rational formula can often be safely applied to cases of rupture

by using empirical constants, but it is rarely the case that an

empirical formula containing constants deduced from experi-

ments on rupture can be applied to cases in which the elastic

limit is not exceeded, except by the use of arbitrary factors of

safety. For this reason Rankine's formula is not a satisfactory

one, and yet the long use of it by the engineering profession has

buUt up a system of practice and precedent which must con-

tinue to be respected until the time arrives when a satisfactory

theoretical formula shall be established. The present indica-

tions are that the errors of Rankine's formula, when used with

the average empirical values of ^ given in Art. 80, are on the

side of safety.

Prob. 85a. Refer to Van Nostrand's Engineering Magazine for

December, 1879, ^^^ ascertain the assumption used by Crehore in his

derivation of the above column formula. Concerning the validity

of this assumption,, refer to the remarks in the last paragraph of

Art. 88.
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Art. 86. Eccentric Loads on Prisms

In all the preceding discussions, the load on the column

has been regarded as axial, but cases are very common in engineer-

ing practice where the load P is applied at the distance p from

the axis of the column ; this lever arm p is called the " eccentricity "

of the load. It is evident that the flexural stresses in the column

will increase with p and that the total imit-stress S on the most

compressed side of the column will be greater than for the case

of an axial load.

fMP

Fig. 86a Fig. 866

Fig. 86a shows two rectangular colimins with eccentric loads.

In the first diagram, the weight P on the top has a resultant

shown by the arrow which falls within the cross-section; in

the second, this resultant hne falls without the cross-section. In

these two diagrams, the point of application of P is on a median

line of the cross-section, and this is the common case in prac-

tice, but Fig. 866 shows the tmusual case where the point of appli-

cation is not on a median line of the cross-section of the column.

In aU instances of eccentric loads, however, the tendency of

the load is to cause rotation about an axis perpendicular to direc-

tion of the lever arm p. Thus, in each of the figures, let mn be

drawn in the plane of the cross-section through the axis of the

column and normal to p; then the flexural stresses are to be

referred to mn as a neutral axis, and the moment of inertia
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of the cross-section with respect to this axis mn is to be deter-

mined by the methods of Art. 43. The shaded areas in Fig, 86a

show the compressive unit-stresses due to the eccentric load

when the elastic limit of the material is not exceeded, the varia-

tion occurring at a uniform rate.

It will now be shown that, whatever the shape of the section

area a, the unit-stress along the axis of the column, due to the

eccentric load P, is P/a. Let the total unit-stress as on the side

of the column nearest the load be called S, and the unit-stress cd

along the axis of the column be called B; it is required to prove

that B = P/a. For this purpose let pq be drawn parallel to ab,

•then ap is B and ps is S—B. Now from the flexure formula

(41) there may be written {S—B)/c = M/I, where c is the dis-

tance ca in the figure and I is the moment of inertia of the sec-

tion area with respect to the neutral axis mn. Now let ab and

st be produced until they meet in e at the distance z from the

axis of the colimin and let e be taken as an axis of moments;

then the flexure formula is S/(c+z) = M'/r, where M' is the

moment of P and /' the moment of inertia of the section with

respect to an axis through e parallel to mn. From similar tri-

angles it is seen that (S—B)/c equals B/z and also that S/{c+z)

equals B/z; accordingly, .

|

B/z=M/I and, B/z=M'/r ''

are two fonnulas for determining B and z. Since M =Pp and

M'=P(p+z), while I = ar^ and /' = ar^+ az^, where r is the radius

of gyration of the section with respect to the axis mn, the solu-

tion of the two equations gives the results,

B=P/a and ' z=r^/p

Therefore, the unit-stress along the axis of the column equals

the unit-load P/a, and the product of the lever arm p and the

distance z equals the square of the radius of gyration of the section.

The total compressive unit-stress S now immediately results

from the flexure formula {S—B)/c = M/I. Inserting in this the

values of M and I, and that of B just found, it becomes,

S=—(i+^ whence —=
, ^, „ (86)a\r^l a i+ cp/r^ ^ '
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from- which S can be computed for a given P, and P/a be found

for a given S. This formula is strictly applicable only to short

prisms, since it takes no account of the lateral deflection of the

column.

"When the cross-section is a rectangle having the depth d

in a plane passing through P and the axis, the value of r^ is

j\bd^/bd=^\d^, and since c is ^ for this case, the expression

for S becomes P/a[i+6{p/d)], which is the same result as found

ia Art. 29. When the cross-section is a circle of diameter d,

the value of r^ is -^d^ and that of c is ^d; hence the expression

for S reduces to P/a[i + 8(p/d)]. The above formula, indeed,

applies to aU forms of cross-section, provided the unit-stress 5

does not exceed the elastic limit of the material.

Let c' be the distance from the axis of the column to the

other side of the column where the unit-stress is S'; then the

value of S' is {P/a)(i—c'p/r^) and S' will be tensile when p

is greater than r^/c'; this case is shown in the second diagram

of Fig. 86a, where the point e is within tlie section.

For columns having ratios of slendemess between 30 and

100, a common method of taking into account the effect of an

eccentric load is to add the flexural unit-stress above found to

that given by Rankine's formula; thus results,

for the greatest compressive unit-stress on the concave side of

the column. This formula may be used to investigate the strengdi

of a column, to compute the safe load, or to design a column

section by methods exactly like those explained in Arts. 81-83.

When several loads Pi, P2, etc., are on the column at the

distances pi, p2, etc., from the axis, their sum or resultant is P

and its lever arm with respect to the axis is found from p =

(Pipi+P2p2+etc.)/P- In this manner all the acting loads are

replaced by a single load P having the eccentricity p.

Prob. 86a. Using formula (86)' solve Prob. 82a, taking the eccen-

tricity of the load as i^ inches.
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Prob. 86&. Using formula (86)' solve Prob. 83, taking the eccen-

tricity of the given load as 2^ inches.

Art. 87. Eccentric Loads on Columns

The investigation of the last article gives results for 5 which

are too small, especially for columns having a slendemess ratio

greater than about loo, since the lateral deflection of the column

due to 'the eccentric load will increase the eccentricity of the

load for all sections except those at the ends. Thus, in the fol-

lowing figures, let p be the eccentricity of the load P, and / the

maximum deflection of the axis of the column from its original

straight position; then the lever arm or eccentricity of the load

with respect to the neutral axis of the dangerous section is p+f,
which may be called q, so that formula (86) becomes,

and hence f or q must be determined in order to find S,

Fig. 87a Fig. 876 Fig. 87c

Let Pq be the axial load given by Euler's formula for long

columns, and suppose that this load is applied to the column

when it has the deflection /, the eccentric load P being removed.

Then this load Pq will hold the long column in equilibrium and

its moment with respect to the axis of the dangerous section is
,

Pof, while the moment of the eccentric load with respect to the

same section was P{p+f)- Equating these moments, it follows

that,

f=Pp/{Po-P) and q=PoP/(Po-P)

which indicates that the deflection of a column under an eccentric

load is determinate, although under an axial load it is indeter-
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minate. Deflections computed from this formula are, however,

too small, because it has been deduced by considering only the

moment at the middle of the column, whereas all moments should

be taken into account.

Let Fig. 87b represent a column of length I which is free at

the upper end and vertically fixed at its lower end. Let the

origin of coordinates be taken at the top under the load, values

of X being measured dbwnward and those of y horizontally. The
bending moment for any point of the elastic curve is —Py, and

hence EI . d^y/dx^ Py, in which / is moment of inertia of

the cross-section and E is the modulus of elasticity of the mate-

rial. Integrating this and determining the constant by the con-

dition that the tangent dy/dx = o when y = q, there results

EI . dy^/§x^=P{q^-y^). Integrating again and ascertaining the

constant by the condition that y = p when x=o, there is found,

y if

arc sin—= (P/EI)ix-\-dxc sin-
? 1

for the equation of the elastic curve. From this equation the

total eccentricity q is xietermined by making x=lioT y=q, and,

p=q sin[J;r- {P/EI)''I] whence q==p sec{P/EI)H

Now let 6 represent the number (PP/EI)^, this being an angle

measured in radians. Then the value of q is given by,

q=p sec0=/'(i+ o.s(92+o.2o8(?*-|-o.o847^8-f. .
.) (87)'

where the quantity in the parenthesis is obtained by expanding

sec^ into a series by Maclaurin's theorem.

By referring to Art. 78 it will be seen that the above value

of q applies to a colunrn with two round ends if I is replaced by

^l, to a column with one end round and the other fixed if I is

replaced by ^l, and to a column with two fixed ends if / is replaced

by II. Accordingly in (87) let the unit-load P/a be represented

by B; also in the value of 6 let I be replaced by ar'^, where r is

the least radius of gyration of the section. Then the formula,

S=B (i+^ seci?) =B+B^^(^i+o.sd^+o.2o8d*+.

.

.) (87)"

applies to all columns, when d^ has the following values

:
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for one end free and the other fixed, 0'^=^B/E . Q/r)^

for both ends round, - d^=\B/E . {l/rf

for one end round and the oth-er fixed, d'^=\B/E . Q/r)'^

for both ends fixed, d^-^^^B/E . Q/r)^

In computing the unit-stress S, the second expression given is

usually preferable, since the first one requires the use of a trig-

onometric table. When B approaches the imit-load given by

Euler's formula, then d^ approaches the value Jtt^, and for this

value the series is not convergent. When is greater than unity,

it will usually be necessary to find sec5 with the help of a table.

For example, let the unit-load B be lo ooo pounds per square

inch, applied at a distance of i.oi inches from the axis of a steel

column having rotmd ends, the length of the column being 192

inches, the distance c being 4.45 inches, and the radius of gyra-

tion in the direction of the eccentricity being 3.00 inches. Hence
^2 = J(5/£)(//f)2 = 0.3413-, and then the series in (87)" gives

5 = 16900 pounds per square inch, so that the eccentric -load

increases the mean unit-stress about 69 percent. Or, using the

value of ^, formula (87)' gives 9=0.197 inches and then from

(87) the unit-stress S is directly found.

To illustrate the computation of sec^ and at the same time

show the great influence of an increase in length of the column,

take the same data as above except that the length is twice as

great, or 384 inches. Then, 5^ = 1.2653 and 5 = 1.168 radians =

65° 45', whence from a trigonometric table sec& = 1.934. Accord-

ingly the total eccentricity is g' = i.934/> = 1.934 inches, and the

unit-stress S is 29 300 pounds per square inch.

When a column is to be designed, its length and eccentric

load are given, as also the allowable imit-stress S, and such values

of a, c, and r are to be found as will satisfy (87)" and at the same

time give the greatest economy. This process is a tentative one,

and several trials may be necessary in order to find a satisfactory

section. Probably the best plan is to assume values of a, c, and r

and then compute S, continuing the process until the computed

allowable values fairly agree.
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The above formula (87)" is not convenient for the direct

computation of the eccentric unit-load P/a for a given column

under a given unit-stress 5, and hence a problem of this kind

is also to be solved by successive trials, values of FJa or B being

inserted in the formula until one is foimd which makes 5 the

same as the given value. This process, as also that of designing

a column section, will be often facilitated by assuming sec^ for

the first trial, taking it as unity if the column is short, or about

ij or 2 for a long column.

Prob. 87a. Show that (/>-|-/)c equals r^ for a column so deflected

that there is no stress on the convex side.

Prob. 876. A wooden strut with fixed ends is i8 feet long, 4 inches

square, and the compression of 5 000 pounds is applied half-way be-

tween the center and corner of the end sections. Compute the deflec-

tion at the middle of the column, and the maximum unit-stress 5.

Prob. 87c. Prove that the eccentric load P which holds a roimd-

ended column in equilibrium with the deflection g—^, is given by the

formula P/a=/^{r/I)^{axc cosp/q)^.

Art. 88. On the Theory of Columns

An ideal column is one which is perfectly straight in its orig-

inal unstressed condition and which remains perfectly straight

after the application of an axial load P. The unit-stress is then

imiform in every cross-section and equal to P/a. When P/a

is as large as the value given by Euler's formula and at the same

time less than the elastic limit of the material, the column, if

deflected laterally by a slight force, will remain bent in indiffer-

ent equilibrium when that force is removed. Under ideal con-

ditions, however, no lateral deflection can occur and the column

remains perfectly straight under the axial load.

The length of the ideal column being originally I, its shorten-

ing under the axial load is e = Pl/aE (Art. 9), from which P/o =

Ee/l. Now Euler's formula gives P/a = fxE{r/l)^, and equating

the two values of P/a, there is found e = fxr^/l. The shortening

of the column, when the load reaches the value given by Euler's
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formula, hence depends only upon its length, the radius of gyra-

tion of the cross-section, and the condition of the ends. Accordingly,

columns of different materials have the same change in length

when they are loaded up to the value given by Euler's formula,

the unit-shortening being e/l = [i{r/Tf, in which the values of [i

are those given in Art. 78. This conclusion is an interesting one,

and it may perhaps prove valuable in future discussions.

The ideal column under the axial load P has the uniform

unit-stress P/a in every cross-section, and the greatest value of

this must be less than the elastic limit of the material, since

Euler's formula involves this condition. Now if P/a in Euler's

formula be replaced by 5^ it becomes,

S=fiE(r/F)^ or l/r={/,E/S,)i

from which values of the slendemess ratio l/r can be computed

for different cases. These critical values are the least ones to

which Euler's formula can apply. For instance, columns of.

structural steel with round ends, for which
t^
= n^, give l/r = g2,

while columns of structural steel with fixed ends, for which [i = 271^,

give //?' = i84; the values of E and S^ being 30000000 and

.35 000 pounds per square inch respectively. These critical

values are shown in Fig. 88 by the broken-line ordinates. For

all values of l/r greater than these critical values, Euler's formula

apphes to the ideal column ; for smaller values, the greatest allow-

able uniform unit-stress P/a is S^. The curves drawn with

broken lines show the ultimate unit-loads as given by Rankine's

formula.

One of the methods of deriving Ritter's formula (Art. 85)

is ta obtain the equation of a curve which shall be tangent to

Euler's curve and also to the horizontal straight line which gives

the value of P/a for values of l/r less than the critical values.

Such a curve is shown in the figure for the case of round-ended

columns, and its equation can be deduced by a method similar

to that given in Art. 84. Let x be the abscissa l/r, and y the

ordinate P/a, referred to the rectangular axes. Let it be assumed

that the equation of the curve is similar in form to that of Ran-

kine's formula (Art. 80). Then the equations of the curves
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corresponding to the formulas of Rankine and Euler are,

and ^=5
Now let these curves be tangent to each other; for the point of

tangency the two ordinates are equal, as also the two derivatives

dy/dx. Obtaining and solving these equations, there results

5£;i
= oo for the point of tangency, and <j) = Sg/[iE for the value of

the constant ^. Accordingly,

S, P__ S,y=

is a column formula which satisfies the limiting conditions of

the ideal column, but which, as noted in Art. 85, cannot be

regarded as entirely satisfactory for actual columns.

,ke

1
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deduced from ideal conditions alone should be used with caution

unless it is found that they are in satisfactory accord with experi-

mental results. A formula which applies when the elastic limit

of the material is not exceeded cannot, however, be verified by

experiments on rupture.

The influence of the weight of the column itself has not been

considered in the foregoing pages. When the column is in a

vertical position, as is the case in buildings, it might appear, in

accordance with Art. 28, that the section of the column should

continually increase toward the base in order to give a form of

uniform strength. For a long column, however, the form of

uniform strength must be such that the greatest section comes

at the place where the unit-stress 5 is the greatest, and this will

be where the lateral deflection would be a maximum in case

bending should occur. Disregarding the weight of the column

itself, the greatest section should be at the middle; taking it

into account, the greatest section should be below the middle.

The Doric column of Greek architecture had its greatest diame-

ter at the base, while the Ionic column was usually of constant

diameter from the base up to about one-third of the height;

sometimes, however, Ionic columns have a diameter at the base

slightly less than that at one-third of the height. Since the

length of these columns is usually less than ten diameters, it

must be concluded that considerations of beauty rather than

strength governed the evolution of these ancient forms."

When a column is placed in a horizontal position, its weight

causes flexure which increases the deflection and stress due to

the direct compression. This case will be discussed in Art. 104,

and it will there be seen that the direct compression is some-

times applied eccentrically in order to counteract the flexure

-due to the weight of the column.

In conclusion, referring to Euler's formulas in Art. 78, it

may be noted that the general formula of the elastic curve

EId^y/dx^ =M should be slightly modified for a column under

compression. Considering the demonstration in Art. 45, where

dl is a short unstressed length, it is seen from Fig. 80a that this
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length is decreased by the axial compression before the flexure

takes effect. Introducing this idea in deriving the relations

from the similar triangles, it is found that for the column the

correct equation of the elastic curve is {E—P/a)8^y/dx^=M.

This modifies Euler's formulas only very slightly, since P/a is

small compared with E, and indeed, a more marked modifica-

tion results from the .change in length due to the^ bending, as

wUl be seen from the discussion in Art. 167.

Prob. 88a. Consult Tetmajer's Gesetze der Knickungs- und der

zusammengesetzen Druckfestigkeit (Leipzig, 1903), and compare his

formula for q with (87)'.

Prob. 886. For a round-ended column under a load P having the

eccentricity p, it may be shown, as was done by Moncrieff in Trans-

actions of American Society of Civil Engineers for 1900, that

in which ^ represents the quantity Pf//sfiEar^. Compare this formula

with (87)'' for one or more numerical cases.
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Chapter X

TORSION OF SHAFTS

Art. 89. Phenomena of Torsion

When applied forces cause a bar to twist aroun,d its axis,

'torsional stresses ' arise. If a rectangular bar has one end fixed

and forces are applied to the other end which cause twisting

around its axis, the comers of the bar are seen to assume a spiral

form similar to the threads of a screw. By experiments like those

illustrated in Fig. 169c it has been proved that the phenomena

of torsion are analogous to those of tension. Under small twisting

forces the deformation, or angle of twist, is proportional to the

force, so that the bar returns to its original fonn on the removal

of that force. This law holds until an elastic limit is reached;

beyond this limit the angle of twist increases more rapidly than

the force, and a permanent set remains when the force is removed.

Under further- increase of the twisting, force, the deformation

rapidly increases and rupture finally occurs. In Fig. 169c are

seen a square bar and a round bar which have been ruptured by

torsion.

The force P which causes the twist acts in a direction normal

to the axis of the bar or shaft with a certain lever arm p. Fig. 89

shows a horizontal shaft rigidly fixed at one end, while a weight P
is hung on a lever at right angles to the axis of the shaft. Under

the twisting moment Pp the shaft is deformed, so that an originally

straight line ah becomes the helix ad, while the radial line cb has

moved through the angle bed. The angle bed is evidently propor-

tional to the length of the shaft, while the angle bad is independent

of that length.

The product Pp is the moment of the force P with respect to

the axis of the shaft, p being the perpendicular distance from

that axis to the line of direction of P, and is called the 'twisting

moment '. A^Tiatever be the number of forces acting upon the
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shaft, their resulting twisting moment may always be represented

by a single product Pp. Thus, if the forces Pi and P2 act

with lever arms pi and p2, the twisting moment Pi^i+P2^2 may
be caused by a single force P with the lever arm p.

A graphical representation of the phenomena of torsion may
be made in the same manner as the tension diagram of Fig. 4,

the angles of torsion being taken as abscissas and. the twisting

moments as ordinates. The curve is then a straight line from

the origin until the elastic limit of the material is reached, when

a rapid change occurs and it soon becomes nearly parallel to the

axis of abscissas. The total angle of torsion, like the total ulti-

mate elongation, serves to compare the ductility of materials.

The principal stress which occurs in torsion is that of shearing,

each section of the bar tending to shear off from the one adjacent

to it. The direction of

the shearing stress at

any point in the sec-

tion of a round shaft

is normal to a radius

drawn from the axis to

that point, and the sum
of the moments of all

Fig- 89 the stresses in any sec-

tion is equal to the twisting moment Pp. Fpr a round bar, like

that of Fig. 89, a radial straight line cb is found to remain

straight when displaced to the position cd, provided the shear-

ing elastic limit of the material is not exceeded. For a square or

rectangular bar, this is not the case when the radial line is drawn

to a corner.

Prob. 89a. If a force of 80 pounds aqting at 18 inches from the axis

twists a shaft 15 degrees, what force will produce the same result when

acting at 4 feet from the axis ?

Prob. 896. A shaft 2 feet long is twisted through an angle of 7

degrees by a force of 200 pounds acting at a distance of 6 inches from

the axis. Through what angle will a shaft of the same size and

material and 4 feet long be twisted by a force of 500 pounds acting at

a distance of 18 inches from the axis ?
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Art. 90. The Torsion Formula

It has been found by experiment that the laws governing the

stresses in a section of a. round bar under torsion are similar to

those stated for beams in Art. 40, provided the elastic limit is

not exceeded. The shearing unit-stresses are proportional to their

distances from the axis, because it is observed that any radius,

such as cb in Fig. 89, remains a straight line when it is displaced

by the twisting into the position cd. The law of static equilibrium

requires that the sum of the moments of these shearing stresses

shall be equal to the twisting moment, or,

Resisting Moment ==Twisting Moment

and this condition will now be expressed in algebraic language.

Fig. 90a

Let P be the force acting at a distance p from the axis about

which the twisting takes place, then the value of the twisting

moment is Pp. To find the resisting moment, let c be the distance

from the axis to the outside of the circular cross-section where the

shearing unit-stress is 5. Then, since the shearing unit-stresses

vary as their distances from the axis of the shaft,

5/c= unit-stress at a unit's distance from axb

5 . z/c= unit-stress at a distance z from axis

8a . 50/c= total stress on an elementary area da

8a . 5'zVc=moment of this stress with respect to axis

18a . 5zVc= internal resisting moment

Since S and c are constants, this resisting moment may be

written {S/c)I8a . z^. But the quantity 18a . z^, being the sum

of the products obtained by multiplying each element of area by

the square of its distance from the axis,' is the polar moment of
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inertia of the cross-section and may be denoted by J . The resisting

moment of the internal stresses hence is 5 . //c, and equating this

to the twisting moment, there results,

S.J/c=Pp or S=Pp.c/J (90)

which is the fundamental formula for investigating roimd bars

and shafts that are subject to torsion. It will be called the torsion

formula, but it must be borne in mind that it does not apply

to square or rectangular sections; these will be discussed in

Art. 99.

The flejnire formula S . I/c=M for beams has a close analogy

with the torsion formula. In the flexure formula, c is the distance

from the neutral axis to the remotest fiber and that axis lies in

the plane of the cross-section; in the torsion formula, c is the

radius of the outside circumference of the round bar. In the

flexure formula, 5 is a tensile or compressive unit-stress which

is normal to the section area; in the torsion formula, 5 is a shearing

unit-stress which acts along the section and normal to the

radius. In the flexure formula, M is the bending moment of

the external forces; in the torsion formula, Pp the twisting

moment of the external forces.

, By the help of the torsion formula, three problems like those

of Arts. 48, 49, 50, may be discussed for round bars or shafts.

When the dimensions and the allowable unit-stress are given,

it may be used to compute the safe twisting moment Pp. When
the unit-stress S, and the moment Pp are given, it may be used

to design a shaft or bar, by determining dimensions which will

give a value for J/c equal to Pp/S. The results obtained in this

discussion are only valid when the shearing unit-stress 5 does not

exceed the elastic limit of the material, but it is shown in Art. 94

how the formula may be used for cases of rupture.

In the discussion of shafts, the moments of inertia of cross-

sections are required with respect to a point at the center of the

shaft and not with respect to an axis in the same plane, as in beams

and columns^ The 'polar moment of inertia ' of a surface is

defined as the sum of the products obtained by multiplying each

elementary area by the square of its distance from the center of
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gravity of the surface. Thus if da is any elementary area and

z its distance from the center, the quantity 2da . z^ is the polar

moment of inertia of the surface.

In the figure let 8a be any elementary area and y its distance

from an axis AB passing through the center of gravity of the

section ; then Ida . 'f is the moment of

inertia with respect to this axis AB (Art. 43).

Also, if X is the distance from 8a to an axis

CD which is normal to AB, then 18a . x^

is the moment of inertia with respect to CD.

But, since z^=x^-\-'f', the product 28a. ^ ~^

is equal to I8a .x^^Ma .y^\ that is, Fig. 906

the polar moments of inertia is equal to the sum of the moments

of inertia taken with respect to any two rectangular axes.

By the aid of the above principle, the polar moment of inertia

7 is readily found for a solid or hollow circular section from the

values of / given in Art. 43. Let i be the diameter of a solid

section or the outside diameter of a hollow one, and let d,\ be the

inside diameter of a hollow one ; then,

for a solid shaft, c=\d,, J—-^nd^

for a hollow shaft, c=\i, J=-^^Tc{d'^—d^)

The polar radius of gyration r, defined by the equation J =ar^,

where a is the section area, is also sometimes used in fonnulas;

it Is the radius of a circumference along which the entire area

might be concentrated and have the same polar moment of inertia

as the actual distributed area. The value of r is always less than

^d; for a solid circular section, r^=\d^; for a hollow circular sec-

tion, r^ = \{d^+di^).

Prob. 90o. Three forces of 70, 90, and 120 pounds act at distances

of 8, II, and 6 inches respectively from the axis, and at different dis-

tances from the end of a shaft, the direction of rotation of the second

force being opposite to that of the others. Find the three values of

the twisting moment Pp.

Prob. 90&. A circular shaft is subjected to a maximum shearing

unit-stress of 2 000 pounds when twisted by a force of 90 pounds at a

distance of 27 inches from the axis. Compute the urit-stress pro-

duced by a force of 40 pounds at 21 inches from the axis.
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Art. 91. Transmitting Power by Shafts

Power from a motor is often transmitted to a shaft through a

belt, and then the shaft transmits the power to the places where

the work is to be performed. The shaft of a turbine wheel

transmits the power generg,ted by water in passing through the

wheel directly to dynamos or other machinery. The shaft of

an ocean steamer transmits the power of the engines directly to

the screw propellers. In all these cases the shaft is subject to

a twisting moment Pp which produces in it shearing stresses

and causes it to have a certain angle of twist.

The twisting moment Pp due to the transmission of H horse-

powers through a shaft may be found as follows: Suppose P
to be the tangential force brought by a belt on the circum-

ference of a pulley of radius P\ and let n be the number of revolu-

tions made by the shaft and pulley in one minute. In one revo-

lution the force P overcomes resistance through the distance zitp

and the work PXzjrp or 27tPp is transmitted through the shaft;

in « revolutions the work 2nnPp is transmitted. Xow let N
be the number of units of work per minute which constitute one

horse-power; then 2nnPp=NH, or Pp^NH/zsn. In the

English system of measures, P is in pounds, p in inches, andN is

396 000 pound-inches per minute. In the metric system of

measures, P is in kilograms, p in centimeters, and N is 450 000

kilogram-centimeters per minute. Accordingly,

Pp=63 o^oH/n or Pp=7i 620H/H. (91)

the first being for the English and the second for the metric

system of measures, while Pp= {N/27t)H/-n applies to all systems.

The above formula shows that the twisting moment Pp varies,

directly as the transmitted horse-power and inversely as the speed

of revolution. Therefore, when the speed is low, as it is in starting,

the full power should not be applied to a shaft, for it might render

the twisting moment so great as to injure the material or to cause

rupture.

^Metallic shafts are usually round and the word 'shaft', when
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used without qualification, means a solid round cylinder, properly

supported in bearings. Square shafts are rarely used except

for wooden water wheels, and the torsion formula (90) does not

apply to these unless modified in the manner indicated in Art. 99.

Hollow sections have been much used since 1900 for the large

shafts of ocean steamers. These are advantageous in being of

lighter weight than solid shafts of the same strength and capacity,

as the investigation in Art. 95 will show; these shafts are forged

upon a mandrel and the inside surface is hence subject to the

same treatment as the outside surface.

In designing a shaft to resist a given- twisting moment Pp
the factors of safety may be based upon the average shearing

strengths of materials which are given in Art. 6. The rule that

an allowable unit-stress S should not exceed the shearing elastic

lunit of the material should also be observed, although there is

considerable uncertainty as to the average values of this limit.

Probably the elastic limits for shearing are about three-fourths

of those for tension.

Prob. 91a. Show that the metric horse-power is 1.4 percent less

than the English horse-power; also that one kilogram-meter is equiva-

lent to 7.233 foot-pounds.

Prob. 916. Find the horse-power that can be transmitted by a cast-

iron shaft 3 inches in diameter when making 10 revolutions per min-
ute, the value of S not to exceed i 200 pounds per square inch.

Art. 92. Solid and Hollow Shafts

For solid round shafts of diameter d, the values of / and c

are i^d^ and \d, and the torsion formula (90) reduces to

Pp=-^7td^S or S=i6Pp/7cd?

which may be used for the discussion of shafts when the twisting

moment Pp is required or given. The usual case, however, is

that of the transmission of power, where the value of Pp for the

English system of measures is 63 o^oH/n, as shown in Art. 91

;

inserting this in the last formula, it reduces to the forms,

S=i2ioooH/n<P or d=68.${H/nS)i (92)
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The first of these may be used for investigating the strength of a

given shaft when transmitting H horse-powers and making

n revolutions per minute. The second may be used to determine

the diameter of a shaft to transmit H horse-powers with n revo-

lutions per minute, the allowable unit-stress for the circumfer-

ence of the shaft being S. In both equations d must be taken

in inches and 5 in pounds per square inch.

These equations show that the shearing unit-stress 5 at the

circumference of a solid shaft varies directly as the transmitted

power, inversely as the speed of the shaft, and inversely as the

cube of its diameter. Hence for a given S and n, the diameter

d changes slowly with H; if H" is doubled, d is increased only

26 percent, and the section area is increased 59 percent.

For example, let it be required to design a solid wrought-

iron shaft to transmit 90 horse-power when making 250 revolu-

tions per minute. Here the factor of safely may be about 6,

or 5 may be about 7 000 pounds per square inch. Then from

the above formula the diameter d is found to be 2f inches.

Hollow forged steel shafts are much used for ocean steamers,

since their strength is greater than solid shafts of the same section

area. Let di be the outside and d2 the inside diameter; then the

value of / is i^n{d\^—d^) and that of c is ^d\. Inserting these

in the torsion formula and also the value of Pp from (91), it be-

comes, for English measures,

5(<fi4-4*)/ii=32i oooH/n

which is the equation for use in investigation and design.

For example, a nickel-steel shaft of 17 inches outside diameter

is to transmit 16000 horse-powers at 50 revolutions per minute;

let it be required to find the inside diameter so that the unit-

stress 5 may be 25 000 pounds per square inch. Here every-

thing is given except d^, and from the equation its value is found

to be II inches nearly. The area of the cross-section of this

shaft will be about 132 square inches, and its weight per linear

foot about 449 pounds. A solid shaft having the same strength

will require a diameter of 16 inches, its cross-section will be

201 square inches, and its weight per linear foot about 683 pounds.
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The reason why economy is promoted by the use of a hollow

shaft is the same as that given in Art. 51 for a hollow beam

;

namely, that material is removed from the axis where it is but

little stressed and placed farther away where it is efficient in

resisting the twisting moment. By comparing the above formulas

for solid and hollow shafts, it is seen that they become the same

when d^ equals (di^—d2*)/di. When the section areas of the

solid and hollow shafts are equal, d^ must equal d^—d^. From

these two equations, it follows that the ratio of the strength

of a hollow shaft to that of a solid one of the same section area

is {2di^—d^)/ddi. For example, let d = i2 inches and d\=20

inches; then d^'is i6 inches from the condition of equal section

areas, and the ratio of strengths is 2.73, that is, the strength of

the hollow shaft is 173 percent greater than the solid one.

Prob. 92a. Find the factor of safety for a wrought-iron shaft 2^

inches ui diameter when transmitting 25 horse-power while making 100

revolutions per minute.

Prob. 926. If a hollow shaft has the same section area as a solid

one, the inside diameter being one-half the outside diameter, find the

ratio of the strength of the hollow shaft to that of the solid one.

Art. 93. Twist or Shafts

The angle of twist through which a radius on one end of a

round shaft moves under an applied twisting moment can be

determined, when the unit-stress 5 does not exceed the elastic

limit, from the definitions in Art. 15 with the help of the torsion

formula (90). Let the section be of any shape, J its polar moment

of inertia with respect to the axis about which rotation occurs,

c the distance from that axis to the remotest part of the section

where the shearing unit-stress is S, and F the shearing modulus

of elasticity of the material. The modulus F is defined by S/e,

where e is the deformation per unit of length. Let / be the length

of the shaft, and ^ the angle expressed in radians through which

one end is twisted with respect to the other, that is the angle

dch in Fig. 89a. In this figure the' arc bd is the deformation in

the length l; this deformation is c^ and hence the unit-deforma-
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tion is c<j>/l. Accordingly F=Sl/c(j), and replacing S by its

value Pp . c/J there is obtained,

F=Pp.l/J<j> or ^=Pp.l/FJ (93)

The first of these equations may be used to compute values of

the shearing modulus F from observed values of ^, while the

second is for the determination of ^ when F is given.

In order to compute the shearing modulus of elasticity from

an observed value of the angle of twist the arc (j> should be replaced

by 7i(})o/i8o, where <po is the angle in degrees; then,

<j>o= 57-sPpi/PJ or F^si-zPpl/Ho

By taking several corresponding values of Pp and ^o within the

elastic limit, a good determination of F can be made. For

example, the cast-iron specimen shown in Fig. 169c was lo inches

long and 0.83 inches in diameter, and it twisted through an

angle of 1.3 degrees under 9, twisting moment of 600 inch-pounds;

here 7=0.0466 inches^ and the formula gives i^ = 5 67oooo

pounds per square inch. In this manner the average values of

F have been found to be about 6000000 pounds per square

inch for cast iron and about 12 000 000 pounds per square inch

for steel.

The angle of twist which occurs when a shaft is under stress

in the transmission of power may be determined in a similar

manner. Let H horse-power be transmitted when the shaft

makes n revolutions per minute ; then Pp =.63 ojpH/n in English

measures (Art. 91). Let ^0 be angle of twist in degrees; then

^ is to be replaced by ?r^o/i8o. The formula now becomes,

(po=3 6iooooHl/nFJ (93)'

in which I must be taken in inches, J in inches*, and F in pounds

per square inch. For example, let a steel shaft 125 feet long,

17 inches outside diameter, and 11 inches inside diameter trans-

mit 16 000 horse-powers at 50 revolutions per minute. Here

i? = i6 000 horse-powers, ^ = 1 500 inches, n = ^o, jF = i2 000 000

pounds per square inch, J =6 765 inches*. Then from the

formula (93)' there is found ^0 = 21.4 degrees, which is the angle

through which a point on one end is twisted relative to the corre-



Abt. 94 Rupture by Torsion 235

sponding point on the other end. The angle through which

a straight line on the outside of the shaft is twisted, that is, the

angle had in Fig. 89, is £^0/^=8.5X21.4/1 500=0.12 degrees.

The above formulas show that the angle of twist is propor-

tional to the length of the shaft, and this is found to be also the

case after the elastic limit of the material is exceeded, but the

angle is then very much greater than that given by the formulas.

In the case of the round cast-iron bar shown in Fig. 169c, the

angle of twist at rupture was. 12.3 degrees; this bar had a length

of ID inches and a diameter of 0.83 inches, and it broke under a

twisting moment of 3 910 pound-inches. For the square steel

bar in Fig. 169c, which was 12 inches long, the angle of twist at

rupture was about 900 degrees; further facts regarding this square

bar are given in Art. 99.

Prob. 93a. A solid steel shaft 125 feet long and 16 inches in

diameter transmits 8 000 horse-powers at a speed of 25 revolutions

per minute. Compute the angle of twist.

Prob. 936. A wrought-iron shaft 5 feet long and 2 inches in diame-

ter is twisted through an angle of 7 degrees by a force of 5 000 pounds

acting at 6 inches from its axis, and on the removal of the force it

springs back to its original position. Compute the shearing modulus

of elasticity.

Art. 94. Rupture by Torsion

When a rotmd bar or shaft is twisted to the point of rupture,

failure occurs first at the outside circumference, and this is

rapidly propagated inwards until complete shearing is effected.

The torsion formula 5 . J/c = Pp, does not, however, hold for

cases for rupture, so that a value of 5 computed from it for the

data of failure does not closely agree with the ultunate shearing

strength of the material.

A value of the unit-stress S computed by the torsion formula

from a twisting moment Pp .which causes rupture, may be called

the ' computed twisting strength ' of the material, in analog)'- with

the computed flexural strength obtained for the rupture of a

beam by the use of the flexure formula (Art. 52). The following
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are approximate average values of the computed ultimate twisting

strength of different materials:

Timber Su= 2 000 pounds per^square inch

Cast Iron 5u=3o 000 pounds per square inch

Wrought Iron Su=5S 000 pounds per square inch

Structural Steel 5u= 65 000 pounds per square inch

Strong Steel Su=go 000 pounds per square inch

By the use of these average values, computations may be made
on the rupture of round shafts, that is, the probable twisting

moment which will cause a given shaft to rupture, or the probable

size of a shaft which will fail under a given twisting moment,
may be roughly ascertained.

By comparing the above values with the ultimate shearing

strengths given in Art. 6, it will be seen that they are all larger

with the exception of timber. The statement is sometimes made
that it might be anticipated that the two sets of values should

be the same, but this rests on no reasonable basis. The ultimate

shearing strength of a material is a physical constant, but the

values of S^ have no physical meaning, for they have been com-

puted from a formula which does not correctly represent the

distribution of the internal stresses for cases of rupture. The

quantity S„ is usually called the 'modulus of rupture for torsion ',

but it seems wise to abandon this term and to use one which

gives no erroneous impression.

When that twisting moment Pp is reached in a test where the

angles of twist no longer increase uniformly, the shearing

elastic limit of the material is reached, and the elastic limit for

shearing may be correctly computed from the torsion formula

5 = Pp. c/J. The shearing elastic limit of metals is always

less than those for compression, and in general may be taken at

about one-third of the computed twisting strength S„. Experi-

ments on timber, brick, and stone have been so few in number,

that it is difficult to state average values of their shearing elastic

limits.

In Fig. 169c is shown a cast-iron bar, 0.83 inches in diameter

which broke by torsion under a twisting moment of 3 910 inch-
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pounds. The computed ultimate twisting strength for this case

is 5 = 34 8oo pounds per square inch, which is higher than the

average for cast iron. The square bar of medium steel shown

in Fig. 169c, which was 0.75 inches square, broke under a twisting

moment of 5 800 inch-pounds; the torsion formula (90) cannot

be applied to this case, as the discussion in Art. 99 will show.

Prob. 94. Compute the probable diameter of a wrought-iron shaft

which will rupture by torsion when twisted by a force of 47 pounds

acting at a distance of 47 inches from the axis.

Art. 95. Strength aito Stiffness

The strength of a shaft or of a bar under torsion is measured

by the twisting moment that it can carry. Hence the strengths

of different shafts vary as their values of S . J/c; or for the same

material, the strengths vary as the values of J/c. For example,

let there be two solid shafts of the same material, the diameter

of the first being d and that of the second 2d; since the section

factor J/c is eight times as large for the second as for the first,

it follows that their strengths are in the same ratio. Thus the

strengths of solid shafts of the same material vary as the cubes

of their diameters.

A general comparison of the strength of a round hollow shaft

with that of a solid one having the same section area a will now

be made. Let d be the diameter of the solid shaft, di the outside

and dz the inside diameter of the hollow shaft; then d^ =d-^—d'^

is the condition that the section areas shall be equal. Now,

for the hollow shaft,^

J/.c=n{d,x^-d^)/xi>d^=\a{i-?^di)/ix

and in the same manner for the solid shaft,

J/c=1zi'^/^(ii=-\ad=^\a{i^-i^^

Therefore, dividing the first by the second, and letting a denote

the ratio dx/d^, there is found

hollow/solid= (a2+ i)/a(a2_i)J

which is the ratio of the strength of a hollow shaft to that of a

solid one of the same section area. When d^ is double ^2, the
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value of OL is 2, and the hollow shaft is about 44 percent stronger

than the solid one.

The stiffness of a shaft under torsion is measured by the

twisting moment it can carry with a given angle of twist. By
Art. 93 it is seen that Fp varies directly with J, and hence the

stiffness of a shaft varies directly as its polar moment of inertia.

For the hollow shaft,

and for the solid shaft of equal section area,

J=-i^nd^=\ci^=\a{di^-di)

Therefore, dividing the first by the second, and designating the

ratio J1/J2 by a, there is found

hollow/solid= (a2+ t)/{o?—i)

which is the ratio of the stiffness of a hollow shaft to that of a

solid one of the same section area. When di is double d^, the

value of a is 2, and the hollow shaft is about 67 percent stiffer

than the solid one.

Shafts of the same material and length are of the same strength

when their values of J/c are equal, and of the same stiffness when
their values of / are equal. It is easy to show that the per-

centage of weight saved by using a hollow shaft instead of

a solid one is,

for equal strength 100— ioo[(a'*—a:2)/(Q.2 +i)2]i

for equal stiffness 100— ioo[(a2— i)/(a2^i)]j.

in which a is the ratio di/dz which will be determined by practical

considerations concerning ease of manufacture and operation.

When a = 2, the percentages saved are 21.7 for equal strength

and 22.5 for equal stiffness.

Prob. 95. Compare the strengths of two shafts when stressed to

their elastic limits; the first shaft is solid, 21 inches in diameter, and

has an elastic limit of 25000 pounds per square inch; the second

shaft is hollow, 18 inches outside and 9 inches inside diameter, and

its elastic limit is 45 000 pounds per square inch. If the price per

pound of the first shaft is i8f cents, what price per pound could one

afford to pay for the second shaft ?
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Art. 96. Shaft Couplings

At A and B in Fig. 96 are shown the end and side views of

a flange coupling for a shaft, the flanges being connected by-

bolts. These bolts, in transmitting the torsion from one flange

to the other, are subject to shearing stress, and they must be

of sufficient strength to safely carry it. This shear does not

dilfer in character from that in the main body of the shaft, and

it is the greatest upon the' side of the bolt most remote from the

axis of the shaft.

1

Fig. 96

Let J be the polar moment of inertia of the cross-section of

a solid shaft, c its radius, and S the' shearing unit-stress on the

outer surface. Let 7i be the polar moment of inertia of the

cross-section of the bolts with respect to the axis of the shaft, c\

the distance from the axis of the shaft to the side of the bolts

farthest from the axis, and let the shearing unit-stress on that

side be required to be the same as that on the "outer surface of

the shaft. Then, in order that the bolts may be equal in strength

to the shaft, it is necessary that J/c should equal Ji/ci. The

polar moment of inertia of the section of one bolt with respect

to the axis of the shaft is equal to its polar moment with respect

to its own axis plus the section area of the bolt into the square

of the distance between the two axes.

Let D be the diameter of the shaft, d the diameter of each

of the bolts, h the distance of the center of a bolt from the axis

of the shaft, and n the number of bolts; then

and by equating these values there is found

which is the necessary relation between the quantities in order
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that the bolts may be equal in strength to the shaft, provided

the material be the same. From this formula the number of bolts

required is easily found when d, h, and D are given.

This formula is an awkward one for determining d, and hence

it is often assumed that the shear is uniformly distributed over

the bolts, or that ci=h and Ji=^\nd^h^. This amounts to the

same thing as regarding d as small compared to h, and the expres-

sion then reduces to

DS=4nhd^ or d=i(D^/nh)^

from which an approximate value of d can be found when the

number of bolts is given.

The above supposes the shaft to be solid. When it is hollow,,

with outside diameter D and inside diameter di, the D^ in the

above expressions is to be replaced by D^—di^/D.

The case shown at CD in Fig. 96 is one that would not occur

in practice, but it is here introduced in order to indicate that

the bolts would be subject to a flexural as well as a shearing -

stress. It is clear that the flexural stress will increase with the

length of the bolts, and that they should be greater in diameter

than for the case of pure shearing. The flexural stress will also

depend upon the work transmitted by the shaft. This case will

be investigated in Art. 98 in connection with the discussion of

the pin of a crank shaft.

Prob. 96a. A solid shaft 6 inches in diameter is coupled by bolts

l\ inches in diameter with their centers s inches from the axis. How
many bolts are necessary ?

Prob. 96&. A hoUow shaft 17 inches in outside and 11 inches in

inside diameter is to be coupled by 12 bolts placed with their centers

20 inches from the axis. What should be the diameter of the bolts?

Art. 97. A Shaft with Ceank

A crank pin, CD in Fig. 97, is subject to a pressure W from

the connecting rod of the steam engine, this pressure being uni-

formly distributed over nearly the length of the pin. The pressure

varies at different positions in the stroke of the engine, but for
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ordinary computations may be taken at from lo to 20 percent

greater than the total mean pressure of the steam on the piston;

to this may be added the weight of the connecting and piston

rods in case these should be vertical in position.

The maximum ^pressure W causes a cross-shear in the crank

pin at the section C, and it also causes a flexural stress at the

end C due to a uniform load over the cantilever CD. These

stresses may be computed by the shear and liexure formulas of

Art. 41. The compressive or bearing stress upon the pin is

usually also to be considered, this being estimated per square

unit of diametral area in the same manner as the sidewise pressure

on a rivet (Art. 33.),

In the figure the pressure W is shown acting parallel to the

crank arm BC, but it acts at all angles to this arm during one

revolution of the shaft AB. When it acts

at right angles, the crank arm is a can- /"^

tilever beam, and the maximum flexural ^

stresses which occur at B may be computed i^;,^

by the flexure formula (41). The flexural

unit-stresses in both pin and crank arm

alternate from tension to compression as the
Z>

arm revolves, for the pressure W comes on pig. 97

opposite sides of the pin as the piston rod

moves forward or backward. On account of these alternating

stresses the allowable working unit-stresses should be taken low

in designing the pin and crank arm.

The shaft, crank arm, and pin are usually forged, the whole

being one piece of metal, but for very large shafts the crank

arm may be bored to a diameter slightly less than that of the

end of the shaft and then shrunk upon it (Art. 32). Sometimes

a shaft has a crank arm at each end, it being then called a double-

throw crank shaft; in this case the two crank arms are set at

right angles to each other, in order that the action of the two

pressures W may produce a more uniform twisting moment on

the shaft. The largest crank shaft in use was made by the

Bethlehem Steel Company in 1905; it is 37 inches in outside and
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30 inches in inside diameter, the crank webs are 64 inches long,

49 inches wide and 16 inches thick, and the solid pins are tg inches

in diameter. This double-throw crank shaft is 27 feet long, the

two crank pins, webs, and shaft being one piece of steel which

was forged from an ingot weighing 308000 pounds, and the

weight of the finished shaft is 86 600 pounds.

Prob. 97a. The crank pin CD in Fig. 97 is 8 inches long and 4 inches

in diameter, the pressure W being 60 000 pounds. Compute the bear-

ing unit-stress, the shearing unit-stress, and the flexural unit-stress.

Prob. 976. Let BC be 14 inches long, 4 inches thick, and 10 inches

wide at B. Compute the flexural unit-stress at B when the pressure

of 60 000 pounds acts normal to BC.

Art. 98. A Triple-Crank Shaft

Double and triple cranks are used when several engines are

to be attached to the same shaft, as is usual in ocean steamers.

With the triple arrangement the cranks are set at angles of 120

degrees with each other, thus securing a uniform action upon

the shaft. Fig. 98 shows one of these cranks, AB and EF being

portions of the shaft resting in journal bearings, CD one of the

crank pins to which the connecting rod is attached, while BC and

DE are the crank arms or webs which are usually shrunk upon

the shaft and pins.

The complete investigation of the maximum stresses in such

a crank shaft and pin is one of much difficulty. A brief ab-

stract of such an investigation will, however, here be given for

the crank pin. There are three cranks, and the one to be con-

sidered is the nearest to the propeller, so that the torsion from

the other two cranks is transmitted throu^ the pin CD. This

steel crank pin is hollow, 18 inches in outer diameter and 6 inches

in inner diameter, its length between webs being 24 inches, the

thickness of each web 12 inches, and the distance from the axis

of the shaft to the center of the pin being 30 inches. The three

engines transmit 7 200 horse-power to the shaft EF, of which

4800 horse-power is transmitted through the shaft AB and

through the crank pin CD. The maximum pressure W brought
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by the connecting rod upon the crank pin is 156 000 pounds. It

is required to determine the stresses when the crank makes 80

revolutions per minute.

The pressure W is distributed over about 17 inches of the

length of the pin, so that the bearing compressive stress on the

diametral area is 51 = 156000/17X12 = 765 pounds per square

inch, which is a low and safe value. The shearing unit-stress

•due to W, which is taken as imiformly distributed over the sec-

tion area of the pin, is

52= 78 ooo/i7r(i82— 6^) =345 pounds per square inch

which is also a low working value for steel.

5
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from the shaft and normal to the crank arms; the value of P is

3782000/30 = 126100 pounds, and this produces a bending

moment in the pin which may be taken as a beam fixed at both

ends, while P acts in opposite directions at those ends, as in Fig.

65a. Hence there is a bending moment M' at each end, oppo-

site in sign but equal in value, and the moment at any section is

M=M' +Px; but when x=l the value of -If is —M' and there-

fore M'= ±iPl, which is the maximum bending moment. The
flexure formula (41) then gives

Si=M' . cll=bi oooXi8X9/gV<i8*-6*) = 2 060

which is the flexural stress in pounds per square inch due to the

transmission of power through the pin.

All of these stresses are light, but the pin is necessarily made
heavier than they would require, on account of the additional

stresses due to the shrinking of the web upon the pin. The data

here given are not sufficient to determine these shrinkage stresses,

but the discussion in Art. 154 indicates that there is a radial com-

pressive unit-stress S^ brought by the web upon the pin of proba-

bly 3 000 pounds per square inch, and that this is accompanied

by a tangential compressive unit-stress S^ of about 4 000 pounds

per square inch. These shrinkage stresses occur also in the fillet

of the pin on the inside of the web at D, where all the other

stresses except ^i concentrate. In Art. 179 it will be shown how

these several values may be combined in order to obtain the final

maximum tensile, compressive, and shearing stresses.

Since all these stresses vary in direction and intensity as the

shaft revolves, their effect is more injurious than steady stresses,

and accordingly the factors of safety should be high, or the work-

ing, unit-stresses low, in order that the life of the crank pin may

not be short (Art. 137). Shocks are also brought upon the shaft

of an ocean steamer when the propeller at the stem rises out of

the water and falls back again, as it does when great waves cause

longitudinal oscillations, and these shocks also require that the

working unit-stresses shall be low.

Prob. 98. The shaft EF in Fig. 98 is hollow, the inside diameter

being 8 inches and the outside diameter 24 inches. Compute the flexu-
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ral unit-stress 5 when 7 200 horse-powers are transmitted through it

while it is making 65 revolutions per minute.

Art. 99. Non-Circular Sections

When a rectangular bar is subject to torsion the general

phenomena are the same as those described in Art. 89, but the

distribution of the shearing stresses over the section area is ob-

served to be different from that in a circular section. In Fig.

169c is seen a steel rectangular bar, JXiJXSJ inches, which has

been twisted in a torsion machine through an angle of 142 degrees.

Before the test the surfaces of the bar were blackened and two

series of white lines drawn thereon at right angles to each other;

the figure plainly shows the distortion of the rectangles into

rhombuses, the greatest distortion in the right angles being

at the middle of the wide side, while the white lines remain closely

perpendicular to the comer lines of the bar. From many ex-

periments of this kind it is concluded, since stresses are propor-

tional to distortions, that the shearing unit-stress at the middle

of the wide side is greater than that at the middle of the narrow

side of the rectangular bar, and that there are no shearing stresses,

along the comers.

When lines are ruled upon the surface of a round bar it is

observed that the distortion of the angles is the same on all parts

of the surface, and hence the shearing unit-stress is uniform

over that surface ; this is the basis of the torsion formula deduced

in Art. 90. For a bar of elliptical section, however, it is observed

that the distortion of the angles is greatest on the flatter side

of the section ; hence the shearing unit-stress is there the greatest,

and the torsion formula (90) does not apply to the elliptical bar;

in fact, that formula appHes only to circular sections, and it

should not be used for other sections except for approximate

investigations. The correct torsion formulas for elliptical and

rectangular sections will now be deduced.

Let Fig. 99a represent a section of an elliptical bar which

is subject to a twisting moment Pp from a force P acting in a

plane normal to the axis and at a distance p from that axis. Let



246 Torsion or Shafts Chap. X

m be the major axis and n the minor axis of the ellipse, let y

and X be the vertical and horizontal coordinates of any point

on the circumference of the ellipse with respect to m and n as

coordinates axes. Let Sy and 52 be the shearing unit-stresses at

the extremities of the minor and major axes, and 5 the shearing

luiit-stress at the point where coordinates are y and x; these

stresses are tangential to the circumference. Let S' and S" be

the components of S parallel to Si and ^2; and let x be the angle

which 5 makes with 5i ; then S' =S cos;f and S" =S sin;^, whence

S"/S' =ta.nx. The equation of the ellipse is m^y^+n^x^ = \m^n^,

and by differentiation there is found dy/§x = '—m^x/n^y=tanx;

accordingly S"/S' =n^x/m^y and it thus appears that the com-

ponents 5" and S' are proportional to their distances from the

coordinate axes n and m. When the elastic limit of the material

is not exceeded, the same relation must hold between the com-

ponents of the unit-stress at any point within the ellipse, for

here, as in the circle, the unit-stresses along any radius vector

vary proportionally as their distances from the center.

Fig. 99a Fig. 996

Now let yi and xi refer to any point within the ellipse and

let mi and fix be the axes of an ellipse passing through that point,

the ratio mi/ni being equal to m/n. Let Sx and Sy be the com-

ponents of the unit-stress at that point, Sx being parallel to Si

and Sy to ^2; then also Sy/Sx=ni^Xi/mi^yi. Let da be the

element of area at the given point; then Sxyida+SyXiSa is the

resisting twisting moment of the stress on that area, and the sum

of all similar expressions for all elements of the area equals the

twisting moment, or

SSxyida+ ISyXi8a=Pp

Substituting in this for Sy its value Sx • n^xi/m-^yi and then for

Sx its value S'. yi/y, and also for wi/«i its value m/n, the com-
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ponent S' is found. Similarly substituting for S^ its value

Sy . mi^yi/ni^xi and then for Sy its value S" . Xi/x, the com-

ponent S" is found. In both cases lyx^da is the moment of in-

ertia 7i of the area of the ellipse with respect to the major axis m,

while Ix-^da is the moment of inertia I2 with respect to the

minqr axis n. Thus are found,

„^ Pp . nfiy _ Pp . n^x

which are the components of the shearing unit-stress S at any

point on the circumference whose coordinates are y and *. When
y=o and x = ^m, the horizontal component S' is o and the vertical

component 5" becomes ^2 in the figure ; when x = o and y = ^«, the

vertical component S" is zero and the horizontal component be-

comes 5i in the figure. The ratio S1/S2 is hence equal to m^n/mn^

or to m/n, that is, the shearing unit-stresses at the ends of tlie axes

are inversely proportional to the lengths of those axes. The
greatest unit-stress hence occurs at the ends of the minor axis,

while the least unit-stress on the circumference occurs at the ends

of the major axis; hence 5i is the unit-stress to be used. The
rectangular moment of inertia of the ellipse with respect to its

major axis is 7i = -^nmn^ and that with respect to the minor

axis is I'i=-^-iTt'rrfin (Art. 43). Substituting these values in the

above value of S' and making y = \n, there results,

S\= -„ or Pp=Tcmni^S\

which are the formulas for discussing a bar of elliptical cross-

section under torsion. When m=n=d, the ellipse becomes a

circle, and the formula reduces to that deduced for the circle

in Art. 92.

For the rectangle in Fig. 99&, the exact discussion is much
more difficult because the stresses are not proportional to their

distances from the axis except along the median lines. On any

side the stress is greatest at the middle and varies approximately

as the ordinates of a parabola toward each comer where it be-

comes zero; the stress at the middle of the broad side is greater

than that at the middle of the narrow side, as in the elliptical

section. Let m and n be the long and short sides of the rectangle,
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and let x and y be coordinates of any point within the rect-

angle with respect to axes through the center, x being parallel

to m and y to n. Then the above facts of experiment indicate

that the variation of stresses throughout the rectangle is closely

expressed by

where 5i and ^2 are the unit-stresses at the middle of the lono-

and short sides, respectively, aijd Sx and Sy are the components
parallel to 5i and 52 of the unit-stress at any point. The funda-

mental equation between resisting and twisting moment is also

the same as before; replacing the sign of summation by that of

integration and da by dx dy, it becomes,

fs^y dx dy+fSyX dx dy=Pp

Inserting in this the values of 5, and Sy and integrating, first

between the limits +^ and -^Jw for y, and second between the

limits +^m and —^ for x, it becomes \mn{Sin+S2m)=Pp.
Now, as in the ellipse, S1/S2 equals m/n, and accordingly S2m
equals Sifi; whence, since Si is the greatest unit-stress,

Si = %Pp/mn^ or Pp=\mffiSi

are the formulas for discussing rectangular bars under torsion.

Apply to a square bar of side d by making mn^ equal to d^.

A comparison of the strength of solid round and square shafts

is now readily made from the values of the twisting moments

derived in Art. 92 and in the preceding paragraph:

for a round shaft, Pp=-^'^Sd?=o.i()6/^d?

for a square shaft, Pp= ^Sd^— 0.222286?

and accordingly the strength of a square shaft of side </ is 13

percent greater than that of a round shaft of diameter d, the shear-

ing unit-stress being the same in the two cases. When power is

transmitted by a square shaft, Pp is to be replaced by 63 o^oH/n
for English measures and then are found

3=284 oooH/nd^ or d=6s,l{H/nS)i

which are the formulas for the investigation and design of solid

square shafts similar to those of (92) for solid round shafts.
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The angle of twist produced in a non-circular section by a

given twisting moment cannot be deduced by the method given

in Art. 93 for round shafts, on account of the irregular distribution

of stresses. The investigations of Saint Venant, who was the first

to establish the correct theory of torsion, give the following value

for the angle of twist for a square shaft, that for the round shaft

being derived from Art. 93

:

for a round shaft, <p= io.i8Pp .l/Fd^

for a square shaft, ^= y-iiPp .l/Fd^

and hence the angle of twist of a round shaft is 43 percent greater

than for a square one. These values of ^ are in radians; when

the angle is desired in degrees, it should be remembered that one

radian is equivalent to 57.3 degrees.

All the formulas of this article are valid only when the great-

est shearing imit-stress does not exceed the elastic limit of the

material. The formula S = \Pp/inn^ may, however, be used to

compute the so-called torsional modulus of rupture or torsional

strength when a rectangular bar is ruptured by torsion, n being

the short side of the rectangle. When rupture occurs in the

twisting of such a bar, it usually begins at the middle of the flat

side, so that even in this extreme case there is little shearing stress

on the comers. Cracks occurring on the comers are to be attrib-

uted to tensile stresses which accompany the elongation due to

the change of a straight line into a helix. For example, the

square steel bar in Fig. 169c was iif inches long between the Jaws

of the torsion machine, and this length was not increased by the

twist of 900 degrees. The side of the square being 0.75 inches,

the length of its diagonal is 1.06 inches, the length of a circum-

ference of 900 degrees described by the comer is 8.33 inches,

and the length of the helix is 14.40 inches; hence the increase in

length of the comer line was 2.65 inches and the percentage of

elongation was nearly 23 percent, which is less than, the ultimate

elongation. The specimen broke by shearing at one end imder

a twisting moment of 5 850 inch-poimds, so that the computed

torsional strength of the steel is 5=9X5850/2X0.75^=62400

pounds per square inch.
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Prob. 99a. Check the computations in the last paragraph.

Prob. 99&. Compare the strength of a round shaft with that of a

square one having the same area of cross-section.

Prob. 99c. A square wooden shaft for a water wheel is 12 inches

square and transmits 36 horse-powers at 9 revolutions per mLnute..

Compute its factor of safety.

Prob. 99d. The rectangular bar of medium steel in Fig. 169c was

twisted through an angle of 28.5 degrees by a twisting moment of

2 800 inch-pounds, the length of the bar beiag 8J inches, its thickness

J inch, and its width i^ inches. Compute the shearing vmit-stress for

these data, and determine whether or not the shearing elastic limit of

the material was exceeded.
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Chapter XI

APPARENT COMBINED STRESSES

Art. 100. Stresses due to Temperature

Several axial loads produce the same unit-stress in a bar as

a single load equal to their algebraic sum and the change ,of

length which is that due to this load. When the bar is thus

stressed at a certain temperature, a change in temperature usually

causes the existing stress to become greater or less. "WTien a bar

is free to expand or contract under a rise or fall of temperature,

there occurs a change of length which is imaccompanied by

internal stress, for in this case there is no external force and stress

is an internal resistance to an applied external force. If this

change of length is, however, prevented from occurring by fast-

ening the ends of the bar, there is pnxiuced an internal stress

which is the same as that which would be caused by an external

force which would shorten or lengthen the free bar the same

amount that it has expanded or contracted. For example, let a

free steel bar loo inches long become 99.9 inches long under a

certain fall of temperature, then no internal stress is caused by

this change in length ; to bring this bar back to its original length,

there must be effected the unit-elongation 0.1/100=0.001 and

Art. 10 shows that this will require a tension of o.ooi X 30 000 000 =

30 000 pounds per square- inch. Hence, if this bar is prevented

from shortening under the given fall of temperature, a tensile

imit-stress of 30 000 poimds per square inch is produced in every

cross-section.

Let e be the change per unit of length which occurs when a

bar is free to expand or contract, ij the coefficient of linear ex-

pansion or change per imit of length for a rise or fall of one degree

Fahrenheit, and t the number of degrees of rise or fall; also let

S be the unit-stress which will occur if the bar is prevented from

expanding or contracting, and E be the modulus of elasticity of
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the material. Then from the preceding paragraph and from

Art. 9,

£= )ji s=sE S=yitE (100)

It is thus seen that the unit-stress due to change of temperature

is independent of the length of the bar; if a is the section area

of the bar, the total stress in each section due to the change in

temperature is aS.

The following are average values of the coefficients of linear

expansion for one degree of the Fahrenheit scale :

for brick and stone, rj =o.ooo 0050

for cast iron, )j =0.000 0062

for wrought iron, jj =0.000 0067

for steel, ij =0.000 0065

From these coefficients the change per unit of length due to a

rise or faU of t degrees is readily computed or the unit-stress 5
may be directly foimd. This temperature stress is to be added

to or subtracted from the tensile or compressive stress due to the

applied forces on the bar.

As an example consider a wrought-iron tie rod 20 feet in

length and 2 inches in diameter which is screwed up to a ten-

sion of 9 000 pounds in order to tie together two walls of a build-

ing. Let it be required to find the stress in the rod when the

temperature falls 10 degrees Fahrenheit. Here,

5=0.000 0067X 10X25 000 000=1 67s pounds

and the stress due to change of temperature is 3.14X1675 =

5 200 pounds, so that the total tensile stress in the bar becomes

9 000 -f 5 200 = 14 200 pounds. Foj a rise of 10 degrees Fahren-

heit, the tensile stress in the bar becomes 9000— 5200=3800
pounds.

It is seen from the above that the unit-stress caused in a steel

bar by a change of one degree Fahrenheit is about 200 pounds

per square inch, so that a change of 100 degrees might cause a

stress of 20000 pounds per square inch if no provision were

made for allowing the bar to change its length. Steel bridges

usually rest on rollers at one end so that change in length may

occur under change of temperature and thus stresses due to
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temperature be prevented. When railroad rails are laid in cold

weather, it is customary to leave the ends about | inch apart, so

that there may be room for expansion when the warm weather

comes; the holes in webs of the rails, through which bolts pass

to connect the splice bars, are made oval instead of round so that

the rails may be free to expand and contract.

Prob. 100. What is the change in length of a steel railroad rail 6o

feet long when the temperature rises from — lo to +8o degrees Fah-

renheit? If the rail weighs 95 pounds per yard, what force is required

to prevent this expansion, and what compressive unit-stress will it

cause in the rail?

Art. 101. Beams under Axial Forces

A normal stress is one acting normally to the section area

of a bar, and this must be either tensile or compressive (Art.l).

When several applied axial forces act upon a bar each produces

a stress on the section area and the sum of these stresses must

equal the total load. Hence the combination of normal stresses

is made by simple addition, if all are tensile or all are compressive

;

when some are tensile and others compressive, their algebraic

sum is to be taken.

A beam under transverse loads has normal stresses of tension

on one side of its neutral surface and normal stresses of com-

pression on the other side (Art. 39). When the beam is under

an axial tension P which is uniformly distributed over the section

area a, the unit-stress P/a is to be added to each of the fiexural

tensile imit-stresses and be subtracted from each of the fiexural

compressive unit-stresses. Thus, if the unit-stresses due to the

flexure on the tensile and compressive sides of the beam are

S\ and 52, then Si-\-P/a is the tensile unit-stress due to flexure

and longitudinal tension, while S2—P/O' is the compressive

imit-stress due to flexure and axial tension.

An approximate method of finding S\ and ^2 is by mean

of the flexure formula (41), which is applied to the transverse

loads just as if the axial tension were not acting. For example,

let it be required to find the factor of safety 01 a 12-inch I beam
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of 6 feet span, weighing 55 pounds per linear foot, which carries

a uniform load of i 200 pounds besides its own weight, when sub-

ject to an axial tension of 80 000 pounds. The flexure formula is

Si . I/c=M; from Table 6 the section factor I/c is 53.5 inches^;

from Art. 38 the bending moment M is 1530X6/8 = 1147.5

pound-feet; hence the tensile unit-stress on the lower side of

the simple beam is 5i = 257 pounds per square inch. Table 6

gives the section area = 16.18 square inches, and hence the

xinit-stress due to the axial tension is P/a =80 000/16.18=4 940

pounds per square inch. Hence on the lower side of the beam,

the total tensile stress is 260+4940 = 5200 pounds per square

inch, and the factor of safety is 60 000/5 200 = 1 1 J. On the upper

side of the beam, the stress is tensile, since P/a is greater than 52,

and its value is 4940— 260=4680 poimds per square inch.

When the axial force on the beam is compression, a similar

approximate method may be followed, the compressive unit-

stress Si on the concave side being found from the flexure formula,

while the unit-stress due to the load is found from P/a, if the

beam is short, or from the column formula (80) if its length

exceeds ten or twelve times its least thickness.

A rafter of a roof is a case of combined compression and

flexure, for a rafter is imder compression from the forces that act

upon its ends and under flexure from its weight and that of the

roof covering. In mtiny cases the approximate method here

outlined is sufl&cient for its investigation. Let the section oi

fe^^
the rafter be rectangular, 6 being

'ff*^--^^^^lij;;^5?:^_^ its width, d its depth, / the length,

^ /~~^^^--^^i!^;^-^.i^ ^ the uniform load per linear

^ .J!r!::i^^ - unit, and <j> the angle of inclina-

Fig-101- '
tion. To find the horizontal re-

action H, the center of moments is taken at the lower end, and,

H . I sm^=ivl . il cos^ whence H=^lcot<f>

For any section area at the distance x from the upper end of the

rafter, the flexure formula gives the flexural unit-stress,

6M

_

6(Hx sin^—^3g^ cos^)
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and the uniform compressive unit-stress is,

P_H cos<p+wx sin<f>

a bd

The total compressive unit-stress on the upper fiber hence is,

S-i>i+P/a—^^ {.loc x)+
^j^

+ j^

By the usual method this is foimd to be a maximum when

x=il+idta,n<f>

and substituting this, the maximum unit-stress is,

_ 3w?2 cos(f, wl cosec^ w sin0 tan^

4bd^ 2bd 126

-which formula may be used to investigate or to design common

rafters subject to uniform loads.

In any inclined rafter, let P denote all the load above a sec-

tion distant x from the upper end. Then reasoning as before

the greatest unit-stress for that section is foimd to be,

„ Mc P sin^ H cosip
'

la a

from which 5a; may be computed for any given case.

Prob. 101a. Find the size of a square wooden simple beam of 12

feet span to carry a load of 300 pounds at the middle when it is also

subject to a longitudinal tension of 2 000 pounds, the allowable tensile

stress being i 000 pounds per square inch.

Prob. 1016. A roof with two equal rafters is 40 feet in span and

15 feet in height. The wooden rafters are 4 inches wide and each

carries a load ot 450 pounds at the middle. Find the depth of the

jafter so that 5 may be 700 pounds per square inch.

Art. 102. Flexure and Compression

Let a beam be subject to flexure by transverse loads and

•also to an axial compression in the direction of its length. If the

longitudinal compression is not large, the combined maximum

stress due to flexure and compression may be computed by the

approximate method of Art. 101. It is clear, however, that

if the compression is large the deflection of the beam will be
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increased by it, and hence the effective bending moment and

maximum fiber stresses will be greater than given by that method.

A closer approximation will now be established.

Let P be the axial compressive force and M the bending

moment of the flexural forces. Let Mi be the actual bending

moment for the dangerous section where the actual deflection is

/i; this is greater than M, on account of the moment P/i of the

force P, or Mi=M+Pfi. Now the maximum fiber unit-stress

^i which results from this moment Mi is, from (41),

Si=Mi.c/I=(M+Pfi)c/I

where I is the moment of inertia of the cross-section and c the

distance from the neutral axis to the remotest fiber on the com-

pressive side. The value of /i may be expressed in terms of Si,

regarding /i to vary with Si in the same manner as for a beam

subject to no axial compression. Inserting then for fi its value

from Art. 56, and solving for 5i, gives,

aPA
, ,

w) (i«^)

where a and /? are numbers that depend upon the arrangement

of the ends and the kind of loading of the beam; for a simple

beam uniformly loaded the value of /?/a is 9.6; for a simple

beam with load at the middle ^/a. is 12.

The maximum compressive unit-stress on the concave side

of the beam is S=Si-\-Pla. For example, let a simple wooden

beam 8 feet long, 10 inches wide, and 9 inches deep be under

an axial compression of 40 000 pounds, while at the same time it

carries a total uniform load of 4000 pounds. Here M=^l
=48000 pound-inches, c=4j inches, I=^hd^=6o']\ inches*,

^=96 inches, P=4o 000 pounds, a = 8, ^ =-^, and £ = i 500 000

pounds per square inch. Inserting these values in the formula, the

value of Mc/I is 356, and then the final flexural stress 5i is found

to be 371 pounds per square inch. The compressive unit -stress

due directly to P is P/o=40 000/90=444, so that the total stress

5=371-1-444=815 pounds per square inch.

Another method, which has a more satisfactory theoretical

basis, is to consider the flexural stress due to P as resulting from

'-?/(
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its eccentricity with respect to the section at the middle of the

beam. Under the action of its own weight a simple -beam has

the deflection /; this is increased by the action of the eccentric

load, and from Art. 87, the total deflection is /sec5 where 9

denotes the quantity ^(PP/EI)^ for a beam with supported

ends. As before, the total flexural imit-stress Si is given by.

{M+ Pfi)c/I, in which fi is to be replaced by/ sec^ ; also replacing

I by ar^, where r is the radius of gyration of the section in the

plane of bending, the total flexural unit-stress Si at the middle

of the concave side of the beam is,

Mc Pqf
I ^ ar^'

in which 6 has the values given in Art. 87 for different arrange-

ments of the ^nds of the beam; sec^ can be found from a trigono-

metric table or from the series in Art. 87.

v^pji^: ^

5i='-!|^-F:^^sec9 (102)'

Fig. 102o Fig. 1026

To illustrate this method, let the data of the above numerical

example be again used. The value of Mc/I is 356 pounds per

square inch and this is the flexural unit-stress due to the uniform

load alone. The last term of the second member gives the

flexural unit-stress due to the moment of P; here ^=4.5

inches, from Art. 55 the deflection due to W is f=%WP/2,?>^I =

0.0506 inches, r^ =607.5/90 =6.75 inches^, ^ = ^(P/V-E^)* "=0.3184

radians = i8° 15', sec5 = 1.053, ^.nd lastly (P/a) (cf/r^) seed = 16

pounds per square inch. The total flexural stress Si is then

356-1-16=372 and total compressive stress S is 372-1-444 = 816

pounds per square inch, which is practically the same as that

previously found. The two methods give, in fact, closely the

same results for the common cases which occur in practice.

While the above methods are satisfactory in regard to numerical

results, a more exact method of dealing with combined flexure

and compression is by help of the elastic curve. For the conmion

case of a simple beam loaded imiformly with w per linear unit
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and under the longitudinal compression P, the bending moment

for any section distant x from the left end of the beam is

\wlx—\wx^ +Py, and the differential equation of the elastic

curve of the beam is,

where the negative sign of the moment is used because of the

theoretic requirement that y and the second derivative must

have opposite signs when the curve is concave to the axis of x.

By two integrations there is found,

_ wlx W3c^ wEI /cos (^2X—l)d/l \ y

^~""2P'^1F'^~P^\ Eos^^ "~V
in which, as before, 6 is an abbreviation for \{PP/EI)^. In

this equation of the elastic curve, let x = ^l, then y =/i and then,

p2f^= -iwfip+wEI(secd-i)

which gives the deflection of the beam due to both the uniform

load and the longitudinal compression. Inserting the value of

the deflection /i in the expression for Si at the beginning of this

article, there is found,

Si= {wcE/P)(secd-i) (102)"

as the flexural unit-stress at the middle of the concave side.

To illustrate this method let the data of the above numerical

example be again used. Here w =4 000/96 pounds per linear

inch, and the other quantities as before, also sec^ = 1.0530; and

then (102)" gives ^'1=373, whence 5=373+444=817 pounds per

square inch, which is practically the same as found by the other

methods. The rough method of Art. 101 gives 5 =800 pounds

per square inch, and in many cases this method may be used to

obtain results which are sufiiciently precise.

When «;=o in formula (102)", the case is that of a column

under the axial load Pi and both /i and Si are zero when P is

less than the value given by Euler's formula (Art. 78), and inde-

terminate when P reaches that value. On the other hand, when

P=o, the case is that of a simple beam uniformly loaded, and

it may be shown that the above formula for /i will reduce to

5W/V384E/, while that for Si will reduce to \wPc/I.
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Prob. 102a. Prove, by using the method of the differential calculus

for evaluating indeterminate quantities, that the statement in the last

sentence is correct.

Prob. 1026. A wooden cantilever beam, lo inches wide and 4 feet

long, carries a uniform load of 500 pounds per foot and is subjected to

a longitudinal compression of 40 000 pounds. Find the depth of the

beam so that the maximum compressive unit-stress may be about 800

pounds per square inch.

Art. 103. Flexure and Tension

Let a beam be subject to flexure by transverse loads and then

to a tension in the direction of its length. The effect of the ten-

sion is to decrease the deflection from / to /i, and thus also the

tensile flexural stress. If M is the bending moment of the trans-

verse loads, and Mt that of the combined flexure and tension,

then Mi=M—Pfi. Let Si be the resulting flexural unit-stress

on the fiber most remote from the neutral surface on the tensile

side; then formula (102) gives Si, if the minus sign in the denomi-

nator is changed to plus. Accordingly,

and Si+P/a is the total unit-stress on the convex side of the

beam resulting from the combined flexure and tension*

As an example, take a steel eye-bar 18 feet long, i inch thick,

and 8 inches deep, under a longitudinal tension of 80 000 pounds,

E being 29 000 000 pounds per square inch. The weight of the

bar is 490 pounds, and M = ^X49oXi8Xi2 = 13 230 pound-

inches. Also c=4 inches, 7=42.67 inches*, p/a=g.6, P —

80 000 pounds, 1 = 216 inches. Then the value of Mc/I is i 240,

and the flexural tensile stress Si is 943 pounds per square inch.

Finally, the total tensile stress on the convex side at the middle

of the beam is 5 =943 -f 10 000 = 10 943 pounds per square inch.

Formula (102)' also appUes to combined flexure and tension

by changing the sign of P from plus to minus. Here 6 becomes

imaginary and the circular secant becomes the hyperbolic secant
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which is designated by sech d. Then,

in which sech^ may be computed from 2/(6" +e~*), where e is

the base of the Naperian system of logarithms and denotes the

real positive number ^{PP/EI)^. For instance, let the data of

the last paragraph be again considered. The value of Mc/I is

I 240 poimds per square inch, which is the flexural unit-stress

due to uniform load alone. Also c=4 inches, r^ =42.67/8 =

5.334 inches, f==sWP/T,S4EI =0.0^2 inches, d = l{PP/EI)^=^

0.868, e» = 2.7180-868 = 2.383, e-» = i/e« =0.420, sech^ = 2/2.803 =
0.714; then P/a = ioooo pounds per square inch, c//r2 =0.039,

and {P/a){cf/r^)sechd=2'j8 pounds per square inch, which is

the flexural stress due to the moment of P. I^astly, the total

tensile stress on the convex side of the middle of the eye-bar is

S = i 240— 278 -f 10 000 = 10 960 pounds per square inch.

Formula (102)" also applies to a beam uniformly loaded and

under the tension P by reversing the sign of P, and thus,

Si= {wcE/P}(i-sechd) (103)"

where is the number ^{PP/EI)^ when the ends of the beam are

supported. For the above eye-bar, sechS =0.714; also w =

490/216 pounds per linear inch. Then the formula gives S\ =
941 for the flexural unit-stress, so that the total ,compressive unit-

stress is 5=941-1-10000 = 10941 pounds per square inch.

The three methods hence give numerical results which are

essentially the same for all practical purposes, but the first one

is the most convenient in computation and hence is generally

preferable. Formula (103) applies to all kinds of loading and

to all arrangements of ends, as also does (103)'; but (lOS)"

applies only to uniform load and for this case it is theoretically

more correct than the other formulas.

Since many students will here meet with hyperbolic functions

for the first time, it may be explained that they are closely anal-

ogous to circular trigonometric functions. For circular functions

cos2^-l-sin25 = i, but for hyperbolic functions cosh2(?-sinh2^= i.
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The value of cos5 is ^(e*'+e~*^), in which e is the Naperian base

2.71828 and i is the square root of — i; the value of cosh^ is

given by the simpler expression ^(e^+ e~^). The reciprocal of

cos5 is sec5 and that of cosh^ is sech^. Hyperbolic functions are

of great importance in the theory of electricity and in other dis-

cussions of applied mechanics; a table of values of such func-

tions may be found in Merriman and Woodward's Higher

Mathematics (New York, 1898).

Prob. 103a. A wooden cantilever beam, 3X4X36 inches, has a

load of 650 pounds at the end and is under the longitudinal compres-

sion of 4 500 pounds. Compute the maximum compressive unit-stress.

Prob. 1036. When the above cantilever beam is under the longitu-

dinal tension of 4 500 pounds, compute the maximum unit-stress due

to it and the load of 650 pounds at the end.

Art. 104. Eccentric Axial Forces on Beams

In the three preceding articles the axial forces applied to the

beam have been supposed to act at the centers of gravity of the

end sections, so that the stresses due to them would be uniformly

distributed over every section area were it not for the deflection of

the beam. Sometimes, however, these -axial forces are applied

eccentrically at the ends, as shown in the following figures. Fig.

104a representing a compression applied through pins which also

serve as supports for the beam, and Fig. 104& representing a ten-

sion applied in a similar way. In the first figure the longitudinal

compressive forces P are applied below the centers of gravity of

the end sections, this being done in order that the moment of P
may tend to decrease the deflection of the beam instead of in-

creasing it as is the case when they are applied axially at the

ends. It is required to find the amount of this eccentricity so

that the unit-stress 5 at the middle of the beam shall be uniform

and equal to P/a over the entire cross-section.

When the stress is uniform over the section at the middle

of the beam, there can be no flexural stresses in that section and

hence no bending moment. To insure this condition, it may

be considered, as an approximation, that the moment of P should
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be equal to the moment M of the transverse loads. Let p be

the distance of P below the center of gravity of the end sections

in Fig. 104a or above it in Fig. 1046. Then when Pp=M there

is no bending moment at the middle; accordingly the required

eccentricity is p=M/P.
For example, take the steel upper chord of a bridge which

has a length of 30 feet between the pins at its ends. The section

is made up of two channels and a plate, as in Fig. 76c, the section

area being 20.5 square inches and its moment of inertia 742
inches*. This chord is subject to a longitudinal compression
of 168 000 pounds, and it is required to find the distance p below
the neutral axis at_ the ends where the centers of the pins should
be located. The weight of the beam is 2 090 pounds, and, taking
it as supported at the ends, the-moment due to its weight is M =
^Wl=g4ooo pound-inches. Then the centers of the pins must
be at the distance ^=94000/168000=0.56 inches below the

axis of the chord in order that no flexural stresses may exist.

The compressive stress over the middle section is then uniform
and equal to 168 000/20.5 =8 200 pounds per square inch.

3- p

Fig. 104a Fig. 1046

The above method is not exact, because it takes no account

of the stiffness of the beam and gives the same results for all

beams of the same weight. A better method may be derived

by considering the beam to have the deflection / before the

eccentric load P is applied. Then for compression p must be

greater than / and the moment P(p—f) should equal M; for

tension the moment P(p+f) is to be equal to M. Accordingly,

P=J+f P=J-f (104)

the first of which applies to compression and the second to ten-

sion. Hence values of p computed from these formulas will

be greater for compression and less for tension than those found

from the preceding method.
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Using the data of the above chord member while it is under

the longitudinal compression of i68 ooo pounds, the deflection

due to its own weight is f=$Wl^/T,'&4EI=6.oi)'] inches, and

ikf/P =0.56 inches as before; then the required eccentricity is

^=0.56 + 0.06=0.62 inches. This same section might serve

for a lower chord under a tension of 168 000 pounds, in which

case the second formula given /»=0.56— 0.06=0.50 inches for

the eccentricity. These values are more reliable than the eccen-

tricity 0.56 inches which preceding method gives for,both com-

pression and tension.

Prob. 104a. Compute the eccentricity p that is required for the

wooden beam which is discussed in Art. 102.

Prob. 104ft. Compute the eccentricity p that is required for the eye-

bar of Art. 103 in order that there may be little or no flexural stress-

at the middle.

Art. 105. Shear and Axial Stress

Let a bar having the section area a be subjected to the longi-

tudinal tension or compression P, and at the same time to a.

shear V at right angles to its length. The axial unit-stress on

the section area is P/a, which may be designated by S, and the

shearing unit-stress is V/a, which may be denoted by 5s. It is

required to find the maximum unit-stresses produced by the

combination of 5 and 5g. In the following demonstration S
will be regarded as a J;ensile unit-stress, although the reasoning

and conclusions apply equally well when it is compressive.

Consider an elementary cubic particle, with edges one unit

in length, acted upon by the horizontal normal unit-stress S and

by the vertical shearing unit-stresses S, and S^j as shown in

Fig. 105a. These forces are not in equilibrium unless a horizontal

couple be applied as in the figure, each of the forces of this couple

being equal to 5,. Therefore at every point of a body under

vertical shear, there exists a horizontal shearing unit-stress equal

to the vertical shearing unit-stress. Heretofore only one of these

shearing stresses has been noted, namely, that which is parallel

to the applied external shear, but it is now seen that this is always
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accompanied by another shearing stress. For example, at any

point in a beam where there is a vertical shearing unit-stress

Vja, there is also found a horizontal shearing ^unit-stress of the

same intensity. Similarly, Fig. 90 shows the shearing stresses

normal to the radius of a shaft imder torsion, but there are also

shearing stresses parallel to the radius which have the opposite

direction of rotation.

a,iv
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Sn is a maximum or minimum when cot2^= —^S/S,

Sp is a maximum when tan2^= + J5/5,

Expressing oos2<^ and sin2^ in terms of cot2^ and tan20 and

inserting their values in the expressions for S„ and Sp, the follow-

ing important results are obtained:

max S„=iS± (5.2+ (^5)2)* max Sp=iS-'+ (iSW (105)

These formulas apply when S is either tension or compression.

When 5 is tension the plus sign before the radical is to be used

to find the maximum tensile imit-stress Sn, while the minus sign'

gives the maximum compressive unit-stress Sn-

For example, take a bolt one inch ia diameter which is sub-

ject to a longitudinal tension of 5 000 poimds and at the same

time to a cross-shear of 3000 pounds. Here 5=6366 pounds

per square inch and 5» = 3 820 pounds per square inch. Then

•S'„=+8i55 pounds per square inch, and 5„=— 1790 pounds

per square inch for the minimum tensile or maximum compres-

sive stress, while 5p=4 97o is the maximum shearing imit-stress;

these are the greatest normal and shearing stresses due to the

combination of 5 and Ss- The directions which these maximum
stresses make with the axis of the bolt are foimd by using the

values of cot20 and tana^ deduced above. For 5„ the value of

cot20 is —3 183/3 820= —0.833, whence 0=64°S3' or ^ = 154°

53', the former being the inclination of the plane against which

the maximimi tensile stress sets and the latter being its incHnation

for the maximum compressive stress; these two planes are at

right angles to each other. For Sp the value of tan2^ is -|- 0.833,

whence ^ = 19° 53' or = 109° 53', these being the directions of

the planes along which the maximum shearing stresses act;

these directions bisect those of the planes upon which the normal

stresses are the greatest.

When S, equals zero the case is that of simple tension or

compression, and max Sn=S, while max Sp= ^S as previously

shown in Art. 6. Here cot2^ = — 00 or ^ = 0°; also tan2^ = oOj

and ^=45° or ^ = 135° so that the maximvim shearing stresses

make angles of 45° with the direction of the axial tension or

compression.
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Prob. 105. A bolt f inch in diameter is subjected to a tension of

2 ooo pounds and at the same time to a cross shear of 3 ocx5 pounds.

Find the maximum tensile and shearing unit-stresses, and the direc-

tions they make with the axis of the bolt.

Art. 106. Combined Flexure and Torsion

This case occurs when a horizontal shaft for the transmission

of power is loaded with weights. Let S be the greatest flexural

unit-stress computed from (41) and 5« the torsional shearing

imit-stress computed from (90) or by the special equations of Arts.

91 and 92. Then, according to the last article, the resultant

maximum imit-stresses are,

max Sn=iSWS,2+ (^5)2 ma,x Sp=VsJ+(^
the first of which gives the greatest tensile or compressive imit-

stress on the lower or upper surface of the shaft, while the second

gives the greatest shearing unit-stress. For wrought iron or

steel it is usually necessary to regard only the first of these unit-

stresses, but for timber the second should also be kept in view.

For example, let it be required to find the maximum unit-

stresses for a horizontal steel shaft, 3 inches in diameter and 12

feet between bearings, which transmits 40 horse-power while

making 120 revolutions per minute, and upon which a load of

800 pounds is brought by a belt and pulley at the middle. Taking

the shaft as fixed over the bearings, the flexure formula (41)

gives for the unit-stress of tension or compression,

S=M . c/I=4Pl/7cd^=5 400 pounds per square inch

From Art. 92, the shearing unit-stress on the surface is,

^,=321 oooH/n(P=4. 000 pounds per square inch

The maximum tensile imit-stress on the lower surface at the

middle of the shaft or on its upper surface in the bearings now is

5n=2 7004-^4000^-1-27002=7 600 pounds per square inch

and the maximum compressive unit-stress on the upper side of

the shaft has the same value; this is 41 percent greater than that

due to pure flexure. The maximima shearing tmit-stress is
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4 900 pounds per square inch, which is 22 percent greater than

that due to pure torsion.

It is thus seen that the actual maximum unit-stresses in a

shaft due to combined flexure and torsion are much higher than

those derived from the formulas for flexure or torsion alone.

In determining the diameter d oi a, shaft, it is hence necessary

to take S„ as the allowable tensile or compressive stress and Sp

as the allowable shearing unit-stress. For a round shaft of

diameter d, the expression for S under any transverse load is

Mc/I = s2M/nd3 (Arts. 41, 42, 43), while that for S, is Pp . c/J=

ibPp/nd^ (Arts. 90, 92). Inserting these in formula (105) and

solving for d^, there is foimd

izSnd?=i6{MW{PpY+M^ nS^^--i(i^{PpY+M^ (106)

in which M is the bending moment of the loads and Pp is the

twisting moment due to the applied twisting forces. When
H horse-powers are transmitted at a speed of n revolutions per

minute, the value of Pp is given by (91). These formulas apply

only to sohd round shafts; the first is to be used when the normal

unit-stress Sn is specified and the second when the shearing unit-

stress Sp is specified.

As an example let it be required to find the diameter of a

horizontal steel shaft to transmit 90 horse-power at 250 revolu-

tions per minute, when the distance between bearings is 8 feet

and there is a load of 480 pounds at the middle, the allowable

unit-stresses Sn for flexure being 7 000 and that for shear being

5 000 pounds per square inch. Here the bending moment M =

^X480X96 = 5 760 poimd-inches, and the twisting moment Pp =

63030X90/250 = 22690 pound-inches. Then using the first-

formula, the diameter d is found to be 2.8 inches, while from the

second formula it is 2.9 inches; hence the shaft should be about

3 inches in diameter.

Formula (106) may also be used for the computation of the

maximum working unit-stresses Sn and Sp when the shaft is

round and hollow. For a hollow shaft which has the outer diam-

eter di and the inner diameter dz, the formula will also apply if

(di^—d2^)/di be substituted for #.



268 Apparent Combined Steesses Chap. XI

Prob. 106a. Find the factor of safety for the data of Prob. 92a,

when the shaft is in bearings 12 feet apart and carries a load of 200

pounds at the middle.

Prob. 1066. A horizontal nickel-steel shaft of 17 inches outside and

II inches inside diameter is to transmit 16000 horse-powers at 50

revolutions per minute, the distance between bearings being 18 feet.

Taking into account the flexure due to the weight of the shaft, compute

the maximum unit-stresses.

Art. 107. Compression and Torsion

When a loaded vertical shaft rests in a step at its foot, the

torsional unit-stress Se combines with the direct compressive unit

stress 5 due to the weight of the shaft and its loads, and there is

produced a resultant compression 5„ and a resultant shear Sp.

These may be computed from (105) after 5 and Ss have been

found.. When W is the load on the section area a, the value of S
is W/a if the shaft is short, while for long shafts it is to be found

from the column formula (80). In order to prevent vibration and

flexure it is usual to place bearings at frequent intervals on a

vertical shaft so that probably the use of the column formula

will rarely be re'quired, particularly when high factors of safety

are used. The value of S, is found from the torsion formula (90),

and for a solid round shaft S, = i6Pp/7td?, where Pp is the twist-

ing moment which may be replaced in terms of the transmitted

power by formula (92).

To find the diameter of a vertical solid round shaft for a given

unit-stress 5„ or Sp, a tentative method must generally be em-

ployed. Inserting 4W/nd^ for 5 and i6Pp/n(P for Ss in for-

mulas (105), they become,

7cSndS= 2WdWii6Pp)^+{2W(I)2 7:Sp^=\/176Pp^+(^WW

and assumed values of d may be substituted in each of these,

until finally a value is found which satisfies the equation. When
d is given, however, the unit-stresses 5„ and Sp may be directly

computed.

A vertical shaft is sometimes so arranged that its weight and

that of its loads is supported near the top on a series of circular
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disks, sometimes called a thrast-bearing. The shaft is thus

brought into tension instead of compression and this is a better

arrangement because there is then no liability to lateral flexure.

The above method and formulas apply also to this case.

Prob. 107a. A vertical shaft, weighing with its loads 6 ooo pounds,

is subjected to a twisting moment by a force of 300 pounds acting at a

distance of 4 feet from its center. If the shaft is wrought iron, 4 feet

long and 2 inches in diameter, find its factor of safety.

Prob. 1076. Find the diameter of a short vertical steel shaft to

carry loads amounting to 6 000 poimds, when twisted by a force of

300 pounds acting at a distance of 4 feet from the center, taking the

working unit-stress for compression as 10 000 and that for shearing as

7 000 pounds per square inch.

Art. 108. Horizontal Shear in Beams

The common theory of flexure, as presented in Chapter V,

considers that the internal stresses at any section are resolved

into their horizontal and vertical components, the former pro-

ducing longitudinal tension and compression and the latter a

transverse shear, and that these act independently of each other.

The shear formula S,a = V supposes further that the vertical

shear is uniformly distributed over the cross-section of the beam.

A closer analysis will show that a horizontal shear exists also and

that this, together with the vertical shear, varies in intensity from

the neutral surface to the upper and lower sides of the beam. It

is well known that a pile of boards which acts like a beam de-

flects more than a solid timber of the same depth, and this is

due to the lack of horizontal resistance between the layers. The
common theory of flexure in neglectmg the horizontal shear gen-

erally errs on the side of safety. In some experiments, however,

beams have been known to crack along the neutral surface, and

it is hence desirable to investigate the effect of horizontal shear

in tending to cause rupture of that kind. That, a horizontal

shear exists simultaneously with the vertical shear is evident

from the considerations in Art. 105.
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Let Fig. 108 represent a portion of a beam of uniform section.

Let a notch nmpq be imagined to be cut into it, and let forces

be applied to it to preserve

/rm

—

^
t̂

n JK

_ J,
T the equihbnum. Let ^ be

I I
the sum of all the horizontal

Z3"
I

components of these forces

acting on mn and H' the
^^ sum of those acting on qp.

Now H' is greater or less than H, hence the difference H'—H
niust act along mq as a horizontal shear. Let the distance mq be

8x, the thickness mm' be t, and the area mqcfm' be at a distance

z above the neutral surface. Let c be the distance from that

neutral surface to the remotest fiber where the unit-stress is 5.

Let da be. the section area of any fiber. Let M be the bending

moment at the section mn and M' that at qp. Then,

5/c= unit-stress at distance unity from neutral surface

5 . z/c= unit-stress at distance z from neutral surface

da . S . z/c= stress on fiber da at distance z from neutral surface

c

{S/c)2z8a=s\im of horizontal stresses between mm' and nn'
z

Now from the flexure formula (41), S/c=M/I for the section mn
and also S/c=M'/I for the section pq, where M and M' are the

bending moments, and I is the moment of inertia of the entire

cross-section. Accordingly,

and hence the horizontal shear along mq is expressed by,

H'-H={M'-Mjllda . z/I

Now, the distance mg' .being dx, the difference M'—M is dM.

Also if Sh is the horizontal shearing unit-stress on the area t . dx,

the value of H'—H is S^tdx. Again from Art. 47 it is known

that dM/dx is the vertical shear V. Therefore,

S^==iV/It)Ilda.z (108)-

is a general formula for the horizontal shearing imit-stress at

the distance z from the neutral surface in any section of a beam
where the vertical shear is V.
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This expression shows that the horizontal shearing unit-stress

is greatest at the supports, and zero at the dangerous section

where V is zero. The summation expression I^da . z is the

statical moment of the area mm'nn' with reference to the neutral

axis; it is zero when z=c, and a maximum when z=o. Hence

the longitudinal unit-shear is zero at the- upper and lower sides

of the beam and is a maximum at the neutral surface. Formula

(108) appHes to any form of section, t being its width at the dis-

tance z from the neutral axis, and / the moment of inertia of the

whole section with respect to that axis. Since the vertical shear-

ing imit-stress at any point is equal to Sh, its value at the neutral

surface is, y y

in which t is the width of the section at the neutral axis, a^ is the

area of the part of the section on one side of the neutral axis,

and Ci is the distance of the center of gravity of that area, from

that axis. This formula gives the maximum shearing unit-stress

and it is always greater than the mean which heretofore has been

foimd by dividing V by the section area a.

For a rectangular beam of breadth h and depth d, the value

of t is b, and that of I is -i^hd^, while the statical moment ajCi

is \bd . ^d. By inserting these in the formula, there results

S,=^V/bd=^ . V/a. Hence the shearing unit-stress along the

neutral surface is 50 percent- greater than the mean shear V/a.

Replacing / in the above formula by ar^, where r is the radius

of gyration of the section area with respect to the neutral axis,

it becomes,
a.c-, V VS.=^.- or 5.=(7- (108)'

where a is the number aici/tr^, by which the mean shear V/a

is to be multiplied in order to obtain the maximum S^ which

acts both horizontally and vertically at the neutral surface. For

a circular section of diameter d, the value of t is d, that of r^ is

''^^d^, that of ai is ^d^, and that of Ci is 2d/^n; accordingly

<T=|, and the maximum shearing unit-stress is Ss =| . V/a, which

is 33^ percent greater than the mean.
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For an I section the coefi&cient a will depend upon the ratio

of the flange and web thicknesses to their lengths. As a numerical

example, take a steel beam 20 inches deep and weighing 80 pounds

per linear foot; the width of flanges being 7.00 inches, the mean

thickness of flanges 0.92 inches, and the thickness of web 0.60

inches. Table 6 gives »'=7.86 inches and i!= o.6o inches; the

statical moment a-^cx is to be foimd by taking the sum of the

moments of flange and web areas on one side of the neutral axis

with respect to that axis. The flange area is 7.00X0.92=6.44

square inches and its center of gravity is 10.00—0.46 = 9.54 inches

from the axis; the web area on one side of the neutral axis is

0.60(10.00— 0.92) = 5.45 square inches, and its center of gravity

is i(10.00— 0.92) =4.54 inches from the axis. Hence the statical

moment aici is 6.44X9.54+5.45X4.54=86.18 inches^. The
coefiicient o now is 86.18/7.86^X0.6 = 2.32, so that the shearing

unit-stress at the neutral surface is 5«= 2.32F/aor 132 percent

greater than the mean unit-shear V/a. It is hence seen that

the shearing imit-stress at the neutral surface of a steel I beam

or plate girder should not be computed by the common formula

when a precise result is required.

Prob. 108. In the Journal of the' Franklin Institute for February,

1883, is described an experiment on a spruce joist 3^X12 inches and

14 feet long, which broke by tension at the middle and afterwards by

shearing along the neutral axis at the end, when loaded at the middle

with 12 545 pounds. Find the maximum horizontal shearing unit-

stress by the use of the above formula.

Art. 109. Lines of Stress in Beams

From the last article it is clear that at any point in a beam

there exists a horizontal and vertical shearing unit-stress S,, the

value of which is given by (108). At that point there is also a

longitudinal tensile or compressive unit-stress S which may be

computed from the flexure formula (41) with the aid of the prin-

ciple that these stresses vary directly as their distances from

the neutral surface. In Art. 105 it was shown that these unit-

stresses combine to produce maximum and minimum normal
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stresses on planes at right angles to each other and maximum
shearing stresses on planes bisecting these. The direction of

the shearing stresses and their values are given by

tan2^=i5/5. 5p=(5/+(i5)2)i

and from these formulas the lines of maximum shear may be

traced throughout the beam.

Art. 108 shows that 5g is greatest at the neutral surface and

zero at the upper and lower sides of the beam. The longitudinal

tensile or compressive stress 5 is zero at the neutral surface and

greatest at the upper and lower side. Hence ^ is o for the neutral

surface, it increases with the distance z from that surface, and it

becomes 45° at the upper and lower sides of the beam. The

broken lines in Fig. 109 show these lines of shear.

The angle which the direction of a maximum or minimum
normal stress makes with the neutral surface is greater or less by

a right angle than the angle 4> given by cot2<^ = —^S/S,, because

<j) is the angle between the neutral surface and the plane against

which S„ acts. Accordingly the direction in which the maxi-

mum tensile stress acts and its value are given by,

.

Now S is the greatest at the convex surface of the beam where"

is o, and hence 6=0°. As the neutral surface is approached S
decreases and 5g increases, whence d also increases. At the neu-

tral surface S is o and S, has its greatest value; hence for that

surface 6 is 45°. The same conclusions follow for the maximum
compressive stress on the other side of the neutral surface.

The following figure is an attempt to represent the lines which

indicate the directions of the maximum unit-stresses in a beam.

The full lines above the neutral surface are those of maximum
compression, while those below are lines of maximum tension.

The broken lines are those of maximum shear. On any line the

intensity of stress varies with the inclination, being greatest where

the line is horizontal and least where its inclination is 45°. The

lines of maxunum shear cut those of maximum tension and com-

pression at angles of 45°. The lines of maximum tension above
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the neutral surface and those of maximum compression below it

are also shown; they are seen to cut the others at right angles

and become vertical at the upper and lower edges of the beam.

There is also another set of shear curves which cut at right angles

those shown in the figure.

^ Fig. 109

It appears from this investigation that the common theory of

flexure gives the horizontal unit-stress correctly, at the dangerous

section of a simple beam under uniform load, since there the ver-

tical shear is zero. At other sections the stress 5 as computed

from the flexure formula is correct for the remotest fiber, but for

other fibers there are greater normal unit-stresses than the com-

mon theory gives. ^For a heavy concentrated load, where the

vertical shear suddenly changes sign at the dangerous section, the

common theory gives the horizontal stress S correctly for the re-

motest fiber only, and it may be possible in some forms of cross-

sections that this is slightly less than the maximum Sn at a point

nearer to the neutral surface. This, however, is a possibility of

rare occurrence, and all that has here been deduced justifies the

validity of the common theory of flexure as a correct guide in the

practical investigation and design of beams.

The resultant combined stresses found in this chapter are

called maximum 'apparent' stresses, since they are the stresses

which are apparently correct according to the principles of statics.

It will be seen later in Chapter XV that the stresses as measured

by the deformations which occur must be considered, these being

called 'true stresses'.

Prob. 109a. A joist fixed at both ends is 3X12 inches and 12 feet

long, and is stressed by a load at the middle, so that the value of S
as computed from (41) is 4 000 pounds per square inch. Find the
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values of Sn for points over the support distant 3, 4, and 5 inches from

the neutral surface.

Prob. 1096. Show, for a point between the neutral surface and the

convex side, that there exists a maximum compression as well as a

maximum tension. Deduce an expression for the value of this maxi-

mum compression and its direction. Draw a figure showing the curves

of maximum compression on both sides of the neutral surface of a

cantilever beam.

Prob. 109c. Consult Weyrauch's Theorie der Trager (Leipzig,

1880), and examine his figures showing the lines of stress in a beam

with overhanging end. Draw similar figures for a beam fixed at one

end and supported at the other.

Prob. lOQd. Consult Winkler's Elasticitat und Festigkeit (Prag,

1867), and examine his formulas for deflection and stress of a beam

under eccentric and axial tension. Show that these formulas may be

much simplified by introducing hyperbolic functions.
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Chapter XII

COMPOUND COLUMNS AND BEAMS

Art. 110. Bars of DrFFERENx Materials

Heretofore when a bar or beam has been mentioned, it has
been understood that it was of the same material throughout.

It is, however, possible to have a bar in which different materials

are combined, and beams of this kind are now common in con-

crete-steel construction. Timber and steel are also sometimes

combined in one beam, especially for the floor stringers of elec-

tric railway bridges.

Fig. 110a Fig. 1106

In the case of a bar the different materials might occupy dif-

ferent parts of the length as shown in Fig. llOo, where the spaces

I, 2, 3 designate different materials, although this is a method

rarely used. In Fig, 110& the three materials are shown arranged

longitudinally, this being the method most commonly employed

for compound bars. Roimd bars for jail windows are sometimes

made of two kinds of steel, an inner core of soft steel and an

outer annulus of very hard steel, the function of the former being

to resist lateral bending and that of the latter to resist attempts of

the prisoners to file or cut. A compound bar may also be formed

of timber and plates of metal bolted together, this being a method

more commonly used for beams than for bars. In these figures

the bars are represented as short columns under compression,

but the following reasoning is general and applies also when com-

pound bars are under tension.
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The load P on the bar is supposed to be axial, so that the

stress is uniformly distributed over the section area of each

material. Considering first the case of Fig. 110a, where the

materials are arranged in series, ^t is plain that the total stress

in each section area is equal to P. Let li, 4, h be the

lengthf; of the three, parts, ai, a^, a^ their section areas, and

El, E2, £3 the moduluses of elasticity of the three materials.

The change of length ei of the first part is Ph/aiEi, that of the

second part is e^^^^Ph/o^Ez, and that of the third part is Ph/ozEz
(Art. 10). Accordingly,

VEjai £2*^2 £3*3''

is the total change in length of the bar provided the elastic limit

of the material be not exceeded. The unit-stresses in the three

parts of the bar are P/ai, P/ci2, P/cz; when the three section

areas are equal, as in the first diagram of Fig. 110a, the imit-

stresses in the three parts are equal.

For the case of Fig. 1106, the three lengths are equal to ly

and the three section areas are ai, 02, a^. Let Pi, P2, Pa denote

the loads borne by the parts, i, 2, 3, the sum of these being equal

to p. These loads may be foimd from the fact that the changes,

of length of the three parts must be equal. Accordingly,

Pi+P2+P3=P Pil/aiEi=P2l/a2E2 P3l/a3E3=P2l/a2E2

are three necessary conditions, and their solution gives.

Pi =P . aiEi/D P2=P . a^lD '

P3=P . ozE^ID (llO)'

in which D represents the quantity ai£i+ 02^2+ 03-^3. After

Pi) P2) P3 bave been computed from these formulas, the unit-

stresses in the three parts of the bar are foimd from 5i=Pi/ai,

52=P2/o2) Sz=Pilaz. These conclusions are not valtd imless

each of these imit-stresses is less than the elastic limit of the

material, because the formulas for change of length apply only

under this conditionr By substituting either of the values of P
in the corresponding expression for change of length, there is

found,
e=P//(ai£i+ffi2£2+ff3£3) (HO)"

which differs materially from (110). These two formulas have
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a marked analogy with the electric equations which connect loss

of voltage with current in wires laid in series and in parallel,

and this analogy will be discussed in Art. 185.

As a numerical example illustrating the case of Fig. 110a,

let the three materials be timber, stone, and steel, so that Ei =

I SCO coo, £2 = 6 000 000, £3 = 30 000 000 pounds per square inch.

Let each section area be a and each length be ^l. Then the

unit-stress in every section area is P/a, and formula (110) gives

the total change of length as e= 0.000 000 28gPl/a.

For the case of Fig. 1106, let the three materials be also timber,

stone, and steel; let each length be / and each section area be ^a.

Then formulas (110)' give Pi =0.04^, P2 = o.i6P, and P3=o.8oP,

so that the stiffest material carries the greatest load, and the

imit-stress in the steel is twenty times that in the timber. From

(110)" the change of length is e= 0.000 000 o8oP//a, or less

than one-third of that of the previous case. These less two

columns contain the same amopnt of each material, but the

total change of length is the greatest for the first case, while the

unit-stress in the steel is the greatest for the second case.

As a numerical example illustrating the second diagram of

Fig. 1106, let the central part be of timber, 6x8 inches in sec-

tion, and let two steel plates, each f inches thick and 8 inches

wide, be bolted to the 8-inch sides. Let the length of the short

column be 5 feet, and the axial load P be 126 000 poimds. Here

1=60 inches, ai = a3=3 square inches, "02=48 square inches.

El =£3 =30 000 000 and £2 = 1 500000 poimds per square inch.

Then the formulas give Pi=P3=-j-3-P=4S 000 pounds, and

P2=fP=36 000 pounds. The compressive unit-stress in the steel

plates then is 51=45000/3 = 15000, and that in the timber is

52 = 36000/48= 750 pounds per square inch. In this case the

two steel plates carry about 70 percent of the total load, and are

so highly stressed that bolts should be placed at frequent intervals

in order to prevent lateral buckling.

Steel ropes are often made with a hemp core in order to give

flexibility, and here also the tensile load is divided between the

two materials inversely as their resistances. Thus, if Oi and a2
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are the section areas of the hemp and steel, and £i and E2 their

moduluses of elasticity, then Pi/P2 = fli-Ei/a2-E2, which shows

that the steel takes nearly all the load, since az is usually equal

to 6ai, while £2 is probably more than 100 times as great -as E\.

Prob. 110. A bar for a jail window has a diameter of 2^ inches, the

central core of soft steel being ij inches in diameter. When this bar

is used under axial tension or compression, show that the unit-stress

on the hard and soft steel is the same.

Art. 111. REiNroRCED Concrete Columns

A common instance of a compound column is that shown in

section in Fig. lllo, which represents a hollow cylinder of cast

iron or steel filled with concrete and used for one of the supports

of a. bridge. The usual intention is that the concrete shall carry

the load, while the metallic cylinder is to prevent the concrete

from cracking under the action of the weather or of collisions

from floating objects. Owing to the friction between the two

materials, however, it is evident that the metal always carries

part of the weight, and the highest load that can come upon it

is readily found from the method of Art. 110. Let P be the

total load on the pier or column, a-y and a^ the section areas of

the concrete and metal, and £1 and £2 the moduluses of elasticity

of the same; then (110)' reduce to.

Pi=P

are the loads which come on concrete and metal respectively.

For example, take a pier where the concrete is 6 feet in diameter,

this being surrounded by a cast-iron casing 1.15 inches thick.

Using the average values in Table 2, the ratio E2/E1 is 5 ; from

Table 16 the area ai is 4071 square inches, while the area a2

is with sufficient precision 7^X73X1.15=283 square inches, and

hence the ratio 01/02 is 14.4. Then the formulas give Pi =0.']^

and P2=o.26P, so that the cast iron may carry about one-fourth

of the load.

The unit-stresses in the different materials of a compound
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column are proportional to their moduluses of elasticity, that is,

to the stiffnesses of the materials. This is readily seen from (110)',

or, for the case of two materials,

PxllaxEx^Pilja^Ei or 82/81= E2/E1

For example, referring to the column of the last paragraph, the

value of E2/E1 is 5, and hence the unit-stress 52 in the cast-iron

is 5 times the unit-stress Si in the concrete.

When bars or rods of metal are placed in a concrete column

it is said to be 'reinforced'. Square or rectangular columns

are built with vertical steel rods located near the comers, as seen

in Fig. 1116. In construction the tods are first put in position,

they being connected by heavy horizontal wires in order to keep

them in place while the concrete is packed in a wooden form

which is built around them. Some of the columns of the Harvard

stadium are 14 inches square and have vertical steel rods f inches

in diameter near the comers. Here the section area of the

four steel rods is ^2 =0.442 square inches, while that of the concrete

is 01 = 196—0.44 = 195.56 square inches, so that the ratio fli/02 =

442. The average value of the ratio E2/E1 is about 10. Accord-

ingly, the formulas give for the load on the concrete Pi =0.978?

and for the load on the steel P2=o.o22P. The allowable unit-

stress for the concrete was taken as 350 pounds per square inch,

hence it follows from the last paragraph that the unit-stress in

the steel rods is about 3 500 pounds per square inch. Here the

full strength of the metal is not developed, and this is usually

the case in reinforced concrete construction.

In the above discussion the column is regarded as so short

that no account need be taken of the lateral flexure, and this

may be safely done until the height of the column exceeds about

twelve times its least diameter. Thus a column 14 inches square

may be as high as 14 feet before it is necessary to use any of the

formulas given for columns in Chapter IX; the slendemess-ratio

l/r corresponding to this rule is about 40 for a square column

and 48 for a round colunm. For higher values of l/r, the method

of iavestigation for the concrete part is to find the load Pi as

above, and then compute the unit-stress S\ from the column
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formula (80), using for the factor ^ a high number, say about

i ^ii , because sufficient experiments have not been made to

determine its proper value. As for the steel, it is everywhere

supported by the concrete and can have no lateral flexure except

that due to the concrete part, but it will be fair to consider that

its tmit-stress 52 is increased in the same proportion as Si, due

xegard being paid to its distance from the axis of the column.

For instance, let 5i and- ^2 as computed for a short prism be

300 and 3 000 pounds per square inch, let Si on the concave

side of the column be found by Rankine's formula to be 500;

then 52 will be 5 000 if the steel is located close to the concave

side, but if it be half-way between that side and the axis 52 will

be only 3000+ ^X10X200=4000 pounds per square inch.

In general, the unit-stress in the concrete reaches its allowable

limit before the steel receives a stress of one-half that which is

permissible.

Fig. Ilia Fig 1116 Fig. 111c

A concrete post is often made having a steel rod running

longitudinally through it at the axis as in Fig. 111c, this being

for the purpose of resisting lateral flexure rather than to assist in

carrying loads. Concrete piles are made on the same plan as

the bridge column above described, the concrete being enclosed

in a metal cylinder. The tunnel under the Hudson river, imder
construction by the Pennsylvania Railroad in 1^06, is supported

on steel screw piles filled with concrete. Foundation walls of

concrete sometimes have vertical steel rods which help to carry

a. part of the weight and at the same time prevent the concrete

from cracking. Reinforced concrete beams are discussed in

Arts. 113-116. Concrete pipes, sewers, arches for buildings and
for bridges, are built in which the steel reinforcement plays a
more important part than it does in columns. Nearly all of this
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reinforced concrete steel construction has been developed since

the first edition of this book was published.

Prob. 111. A concrete pile, as designed for the foundation of a

building in New York, was 12X12 inches in section area, and had

four vertical steel rods, each ij\ inches in diameter and placed at

about two inches from the corner. Compute the unit-stresses in con-

crete and steel at a depth of 12 feet below the top, due to theh own
weight and to a load of 30 000 pounds on the top.

Art. 112. Flitched Beams

A 'flitched beam' is one made of timber with metal plates

upon its sides, these being held in place by bolts passing through

the timber; sometimes, however, a single plate is placed between

two timber beams. The following figures show sections of such

beams; the third one, which is formed by two channels and a

piece of timber, is often used on highway bridges for stringers

which support tracks of an electric railway, the rail being fastened

to the timber part by spikes or lag bolts. The other forms are

sometimes employed in wooden floors. The bolts should in all

cases pass through the neutral axis of the section, in order to

weaken the beam as little as possible.

Fig. 112o Fig. 1126 Fig. 112c

When a load is placed upon such a beam it divides itself be-

tween the two materials in proportions depending upon their

stiffness and section areas. Whether the load be concentrated or

uniform it may be expressed by W, and this will divide into two

parts, Wi being that carried by the timber and W2 that carried

by the metal. Since the two materials are fastened together the

deflection of each is the same. These conditions enable the values

of Wi and W2 to be determined in a manner similar to that used

for the compound column in Art. 110. The length of the metal
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and timber will be taken the same, each being equal to the length

/ of the span of the beam. The modulus of elasticity of the tim-

ber will be denoted by Ei and that of the steel by E2; the moment

of inertia of the cross-section of the timber is /i and that of the

metal is Iz-

The deflection / of a beam may be expressed, as in Art. 56,

by Wl^/pEI, where /? is a number depending upon the kind of

loading and the arrangement of the ends. From the above con-

ditions,

and the solution of these equations gives the values,

which are seen to be the same as (111) except that ai and ^2 are

replaced by /i and 72. After the values of Wi and W2 have been

computed, the unit-Stresses in the timber and steel may be inves-

tigated by the method of Art. 48.

For example, let a flitched timber beam like Fig. 112a be 8X 12

inches in section and each of the steel plates be ^Xg inches. For

the timber /i = ^^X8X 1 2^ and for the steel /2 = t*2 X iX 9^, whence

the ratio 71/72 = 512/27; also the ratio E2/Ei=20. Then (112)

gives Wi = 0.487W and 1^2 = 0.5131^, so that the parts of the load

carried by timber and steel are closely equal. Let the length of

this simple beam be 15 feet and the total imiform load on it be

W=i6ooo pounds, so that ^1 = 7800 and ^^2=8200 pounds.

From the flexure formula (41) the unit-stress on the upper and

lower sides of the timber at the middle of the span is Si =MiCi/Ii =
Wilci/8Ii=gi4 pounds per square inch; also the imit-stress on

the upper and lower sides of the steel at the same section is 52 =

1/2^2/72 = ^''2/^2/872= 13 700 poimds per square inch. These

imit-stresses are safe allowable values for the conditions imder

which such a beam would generally be used.

To design a flitched beam, the size of the timber is first as-

sumed and then the proper thickness and depth of the metal

plates are to be computed. Let Si and ^2 be the given allowable

unit-stresses; from the above their ratio is Si/S2 = WiCil2/W2C2li,
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and replacing Wi and W2 by their values from (1 12) this reduces

to Si/S2=EiC\/E2C2- The total bending moment M, for any-

kind of loading, is equal to the sum of the resisting moments

•S'l . /i/ci and ^2 . 12/02- Accordingly the two equations for

design are,

C2/ci= EiS2/E2Si Si.h/Cx+ S2.l2/C2=M
,

(112)'

in which ci and C2 are the half-depths of timber and metal, and

hence the ratio d2/di equals C2/C1. For cast iron and timber the

ratio E2/E1 is 10, while 52/.S'i may be taken as about 4 for the

tensile side of the beam; hence the depth of the metal should be

about four-tenths of the depth of the timber. For stiructural steel

and timber the ratio E2/E1 is 20, while S2/S1 should be about

15; hence the depth of the steel should be three-fourths of the

depth of the timber. When di and 62 are equal, as in Fig. 112c,

the ratio S1/S2 equals E1/E2, so that the unit-stress on the tim-

ber is one-twentieth of that on the steel.

The proper thickness of the metal plates will depend,upon the

bending moment M. For rectangular sections the moment equa-

tion becomes Sibid\^-\-S2b2d^ = ()M. When the depths d\ and

^2 are given, as also the width 61 of the timber, the thickness 62

of the metal is computed from this equation. For example, let

di = i2 and d2=g inches for timber and steel; then S2/S1 must

equal 15. Hence let 5i = i 000 and 52 = 15 000 pounds per square

inch; let 61 =8 inches, and let it be required to find &2 when the

total load W=i$ 000 pounds and is concentrated at the middle

of a span of 16 feet. Here M^^Wl— j20 000 poimd-inches, and

then the moment formula gives 62 = 2! inches as the total thick-

ness of metal required.

In the case of the trolley stringer of Fig. 112c, the steel chan-

nels carry a large part of the total load W, and they are sometimes

designed so that they may carry it all. When the depth of the

channels and timber are the same, the above theory shows that the

ratio S1/S2 equals E1/E2, and hence the flexural unit-stress on

the channels is twenty times that on the timber. Thus, if 52 for

the structural steel is^taken as 12 000 pounds per square inch, 5i

for the timber will be 600 pounds per square inch. For example.
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let the length of a stringer be 21 feet, and the total uniform load

upon it be 14 000 pounds, this being an equivalent for the total

live and dead load. The moment M is then \Wl=44i 000 inch-

pounds. Let the timber be 8 inches wide and 10 inches deep;

then 7i/ci = 133.3 inches^. Using 5i=6oo and ^2 = 12000, the

value of I2/C2 for the two channels is foimd from the moment

formula of (112)' to be 30.1 inches^, whence from Table 9 it is

seen that the lo-inch channel which weighs 20 poimds per foot is

required. Two channels of this kind have 72 = 157.4 inches*,

while for. the timber /i =666.7 inches*- Accordingly, by the help

of (112) it is found that the channels carry about 83 percent of

the total load.

If the metal plates shown in Figs. 112c and 1126 do not

extends to the ends of the simple beam, but stop a distance id

from the 'ends, the above method needs modification. By an

investigation to be given in Art. 1 23 it will be shown that formulas

(112) apply to this case if /i is multiplied by 1 — S/t^. Hence

the shortening of the plates throws a larger proportion of the

load upon the timber and increases the stress in it at the middle

of the span. The condition Si/S2=EiCi/E2C2 is also to be

modified by multiplying the second member by i — 8«^, so that

the advantageous ratio C2/C1 is less than before. This case need

not be discussed further, because plates extending over only a

part of the length would rarely be used except in order to strengthen

a weak beam, and in such an event no precise computations

would be needed.

Prob. 112. Let a flitched beam, like Fig. 1126, consist of two tim-

bers each 10 inches wide and 14 inches deep, and a steel plate f inches

thick and 7 inches wide. When the unit-stress in the timber is 900

pounds per square inch, what is the unit-stress in the steel? What
percentage does the metal add to the strength of the wooden beam?

Art. 113. Reinforced Concrete Beams

Other methods of ,
longitudinal reinforcement than tha:t de-

scribed in the last article are used for concrete beams. The
method of Fig. llSfl is occasionally used, but here the resistance
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of the concrete to flexure is not generally taken into account,

its ofEce being to protect the steel beam from corrosion or fire,

while the steel beam is considered to carry all the load. When
computations are made on a case of this kind, the formulas of

the last article directly apply, the ratio E2/E1 being taken from

10. to 15, while the ratio 82/81 of the allowable unit-stresses for

the compressive side of the beam will generally range from 8 to 12.

Since the ultimate tensile strength of concrete is from 300 to

500 pounds per square inch, an average allowable tensile unit-

stress is about 40 pounds per square inch, while that for the steel

may easily under steady loads be as high as 15 000 pounds per

square inch. Supposing the steel to be stressed only to 8 000

pounds per square inch, it is seen that 81 for the concrete will

be higher than its tensile strength, so that the practice of designing

the steel beam to carry all the load is justified, the concrete

being considered only as a covering which protects the stfeel in

spite of the cracks on the tensile side.

Fig. 113a Fig. 1136 Fig. 113c Fig. 113d

In the method of reinforcement seen in Fig. 1136, there are

four steel rods arranged symmetrically with respect to the neutral

axis; for wide beams a larger number of rods is used, half of

them above and half belo~w the neutral axis, the distance of each

row from that axis being the same. The fomiulas of Art. 112

apply directly to this case when ci is the half-depth of the rect-

angular section and C2 is the distance from the neutral axis to

the remotest part of the metal. When the area of metal is small

compared to that of the concrete, as is generally the case, it will

be sufficiently precise to take the moment of inertia I2 as equal

to the area a of the metal multiplied by the square of the distance

hirora. its center of gravity to the neutral axis, or /2=a/i^; also

it will be sufficiently precise to take /i =^^hd^, thus supposing

that the concrete fills also the spaces occupied by the metal.
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Considering the uncertainties regarding the values of the ratios

EilEx and SilSx, this method is entirely satisfactory unless a

is more than lo percent of hi.' For example, let the width h

be 8 inches, the depth d be 12 inches, and each of the four steel

rods be IJ inches in diameter, the centers of rods being 4 inches

from the neutral axis; then bd =g6 square inches and a =4.91

square inches; ci=6.o and £2=4.62 inches, 71 = 1152 inches*,

and 72=4.91X4^ = 79 inches*. Now, taking £2/-Ei = io, the

first formula of (112)' gives 52/5i= about 15; accordingly if

the safe allowable tensile unit-stress for concrete is taken as

50 pounds per square inch, ^2 for the steel will be only 750 pounds

per square inch. The steel and concrete do not work well together,

and in fact this design is a poor one. If the load is sufficiently

large to make 52 as high as 12 000 pounds per square inch, a

value which the steel may safely bear, the concrete will be rup-

tured by tension on the convex side, so that it can only serve

as a kind of protective covering for the steel rods. The uniform

load which these rods can safely carry will then be Pf2 = 85272/c2^.

For instance, if the simple beam is 8 feet 4 inches long 1^2 = 16 400

pounds is the load which is carried by the steel if the concrete

does not act at all, while Wi=77o pounds is the load which

might be safely carried by the concrete without any reinforce-

ment. Since, this concrete beam weighs about 800 pounds, it

would safely carry only its own weight unless reinforced.

Figs. 113c show the methods of reinforcement generally used

for concrete beams, the metal being placed only on the tensile side.

The theory given in the preceding article is entirely inapplica-

ble to a beam where the metal is only on one side of the neutral

axis, and the proper theory will be developed in the two following

articles. Various forms of rods are in use, and it has been found

that smooth rods are not the best, since there is a tendency for

them to slip in the concrete. One of the oldest kinds is a rect-

angular twisted bar which is known as the Ransome rod ; another

form is that of Thacher, which is a round bar flattened in two

rectangular directions; Johnson's bar is of rectangular section

with corrugations alternating on adjacent sides. Another rein-

forcement is the lozenge-shaped form, called expanded metal,
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which is widely used for the beams of floors. The Kahn method

consists of rods which are straight near the middle of the beam

and bent upward near the ends, the inclined ends being intended

to prevent the shearing that sometimes occurs along surfaces

which are indicated by the shear lines in Fig. 109.

When steel rods are used in concrete beams, the fundamental

idea is that they are for the purpose of increasing the resistance

on the tensile , side. A plain concrete beam has its neutral sur-

face at the middle and hence the compressive unit-stress on the

upper surface is equal to the tensile unit-stress on the lower

surface when the elastic limit is not exceeded. Hence in a plain

concrete beam the resistance to compression cannot be developed

until the beam is ruptured on the tensile side. When rods are

placed near the lower side, these take tensile stresses and hence

the compressive stresses in the concrete above the neutral sur-

face are increased. In this case the neutral axis no longer

passes through the center of gravity of the section, so that new

formulas must be established for concrete beams reinforced in

this manner, and this will be done in the next article.

Concrete beams are usually rectangular in section, and only

these will be discussed in the following pages. The amount of

metal which is placed near the tensile side of the section is rarely

-greater than 2 percent of the total rectangular section area, about

I percent being the usual practice. Structural steel is mainly

employed, although hard steel has been sometimes used. The

allowable imit-stress for structural steel is generally taken as

12 000 potmds per square inch, although there would be little

objection to stressing it to a value 25 percent higher, but it is

difficult to develop the full resistance of the steel, as will be seen

later. In the discussions of the following pages the average

values of the moduluses of elasticity given in Table 2 will be

used, and hence the ratio E2/E1 will be taken as 10. The allow-

able working unit-stresses for concrete will be generally taken

as 500 pounds per square inch in compression and 60 in tension;

these values apply only to first-class concrete of the proportions

I cement, 2 sand, 4 broken stone (Art. 22).
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Prob. 113. A section like Fig. 1136 is to be used in a floor for a

span of 6^ feet, the depth of the beam being 5 inches and its width

4 feet. The steel rods are one inch in diameter and placed so that

their centers are ij inches from the neutral axis. How many rods

are needed in order that they alone may carry a total uniform load of

5 850 pounds with a factor of safety of 5 ?

Art. 114. Theory of Reinforced Concrete Beams

The theoretic laws of Art. 39 apply to all kinds of beams,

as also the experimental laws 4 and 5 of Art. 40. When different

materials are used in a beam law 6 needs modification, for the

stiffest material is stressed the highest. Law 5 is to be used

in this case, and this states that the unit-elongation or imit-

shortening is the same for both materials. Thus at the same

distance from the neutral surface 5i/£i for the concrete must

equal S2/E2 for the steel. Law 6 applies, however, to the stresses

in each material, and thus the stresses in the concrete vary directly,

as their distances from the neutral surface. The same is true

for the stresses in the metal, but since the section area of this

is small, it will usually be sufficient to regard the unit-stresses

in the metal as imiformly distributed (Art. 113). Let b be the

width and d the depth of the rectangular section, and a the section

area of the metal. In strictness the section area of the concrete

is bd— a, but it wiU be unnecessary to take the diminution of bd

into account, since a is rarely greater than 3 percent of bd.

Case I. Tension in Concrete. Fig. 114ff shows a concrete

beam reinforced with horizontal steel bars at a distance h below

the middle. Let 5i be the compressive imit-stress mp on the

upper side at the dangerous section, ^i' the tensile unit-stress

m'f on the lower side, and 52 the tensile imit-stress in the steel.

Let 55 be the neutral surface at the distance k below the middle

of the simple beam. The first condition of static equilibrium

is that the algebraic sum of all the horizontal stresses in the section

shall equal zero; the sum of all the compressive stresses is

iSib(^+k), for the mean unit-stress J5i acts over the area
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b(^d+k), the sum of all the tensile stresses in the concrete is

^Sib{^d—k), the sum of all the tensile stresses in the steel L
S2a. The second condition of static equilibrium is that the

sum of the moments of these stresses shall equal the bending

moment M; the moment of the compressive stresses with respect

to the neutral axis ss' is ^5i-6(Ji+ k)^, since the total compressive

stress acts with the lever arm %(id+k), the moment of the tensile

stresses in the concrete is ^Sib{^d— k)^, and the moment of

the tensile stresses in the steel is S2aih— k). Accordingly,

iSib{id+,k) =iSi'b{id-k) + S2a

iSib{id+ k) 2

+

^S-i'biid-k)2+S2a(h-k)=M

are two equations connecting the four unknown quantities Si,

Si', S2, k. Two other equations result from the law that the

unit-elongations are proportional to their distances from the

neutral surface: Si/Si' = {id+k)/{^d— k) applies to the concrete

if the elastic limit is not exceeded; S2/E2 is the imit-elongation

in the steel, and this equals the unit-elongation in the concrete at

the distance h—k from the neutral surface, hence 52/^2=

Si(h—k)/Ei{id—k). The solution of the four equations gives,

k= '^

i+(bd/a)iEi/E2)

in which 5 represents the quantity 6M/bd^, this being the unit-

stress in a plain concrete beam due to the given bending moment

M and which is represented by mq and m'q' in Fig. 114o. The

position of the neutral surface depends upon h and the ratios

bd/a and E2/E1.

The above theory applies only when the unit-stresses do not

exceed the elastic limit, but concrete is a brittle material in

which the elastic limit is poorly defined, the stress diagram being

similar to that of cast iron or brick. However, by using high

factors of safety. Si and Si' may be made sufficiently low so that

the above formulas have the same validity as the common flexure

formula has when apphed to brittle materials. Owing to the

low tensile strength of concrete, beams often crack on the tensile
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side, so that the reinforcing bars carry nearly all of the tensile

stresses. It is therefore important to develop the formulas which

apply to such a case, and this will now be done under the assump-

tion that all the tensile stress below the neutral surface is carried

by the steel bars.

'TM
n.

-—

#

vP

%/'9'

lu-

4 M ^

Fig. 114a Fig. 1146

Case II. No Tension in Concrete. Let Fig. 114& represeint

the case where there are no tensile stresses in the concrete, the

notation being the same as before except that the position of

the steel is designated by the distance g measured downward

from the upper surface of the beam, while the neutral surface

ss is at the distance n below the same surface. The compressive

unit-stress Si on the upper side is represented by mp, while S^

is the tensile unit-stress in the metal. To determine these quan-

tities, the static laws of Art. 39, together with the experimental

laws of Art. 40, are again to be used. The sum of all the horizontal

stresses below the neutral axis in the dangerous section is 52^

and the sum of those above it is ^Sibn, since the average unit-

stress ^Si acts over the area bn; hence S2a^^Sibn is the first

equation between ^2 and Si. The sum of the moments of all the

stresses in the section is the resisting moment which equals the

bending moment M. Now S2aig— n) is the moment of the

stresses in the metal with respect to the axis s, and ^Sibn^ is

the moment of the stresses in the concrete, since the total stress

ISibn acts with the lever arm §w; hence S2a{g—n)+ lSibn^ is

the resisting moment which equals M, and this is a second equa-

tion between S2 and Si. A third condition is, however, required,

since the unknown quantity n is contained in each of those thus

far established. This is furnished by the experimental law

regarding changes of length; S2/E2 is the unit-elongation of

the metal which is at the distance g—n from the neutral surface.
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"while the unit-shortening of the concrete at the same distance

from the neutral surface is Si{g—n)/Ein. Hence,

S2a=\Sibn S2a{g-n)+iSibrfi=M S2/E2=(Si/EiXg-n)/n

are three equations for finding n, Si, S2', their solution gives

as

"~b \ \ M / ibn{g-in) aig-^n)

in which s denotes the ratio E2/E1. These formulas do not

contain the depth d, but this is usually i or ij inches greater

than g in order to protect the steel from corrosion.

Prob. 114a. A reinforced concrete beam is 5 inches deep, 4 feet

wide, 6J feet in span, has 1.8 square inches of steel at ij inches below

the middle, and the total load upon it is 6 400 pounds. Show from

(114) that the concrete will probably crash on the tensile side.

Prob. 1146. Using the above data and supposing that the concrete

offers no tensile resistance, compute from (114)' the position of the

neutral surface and the unit-stresses Si and ^2.

Art. 115. Investigation of Reinforced Concrete Beams

The formulas of the last article furnish the means of

investigating a reinforced concrete beam for which the dimensions

and loads are given. When the beam is lightly loaded, so that

the concrete below the neutral surface is in tension, formulas

(114) are to be used. When the beam is so heavily loaded that

this tensile resistance is overcome, formulas (114)' are to be

used, provided the elastic limit of the concrete on the compressive

side is not exceeded. This elastic limit is an uncertain quantity,

but it is probably not far from 600 or 700 pounds per square

inch when the concrete has the proportions of i cement, 2 sand,

4 broken stone. When the beam is so heavily loaded that the

computed Si exceeds this elastic hmit, the formulas do not give

reliable values of the unit-stresses.

For example, let a reinforced concrete beam be 5 inches deep,

4 feet wide, 4^ feet in span, and have 3.6 square inches of steel

placed 2 inches below the middle. Let it be required to investigate
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this beam when it carries a uniform load of 2 400 pounds, includ-

ing its own weight. Here 6= 48, d= $, h=2 inchesp6J=24o

and a=3.6 square inches, whence 0/^= 0.015; also E2/Ei = io

(Art. 113). Using formulas (114) there is found ^=0.261 inches

for the location of the neutral surface below the middle. The
maximum moment is il/=fw/=i6 200 pound-inches, whence

S=6M/bd^= 81 pounds per square inch as the flexural unit-

stress for a plain concrete beam. Then Si = 8g, and 5i'=73
pounds per square inch for the compressive and tensile stresses

on the upper and lower surfaces of the beam, the first giving

a factor of safety of about 33, while the second gives a factor

of safety of about 4. Also ^2=560 pounds per square inch for

the steel, which is a very low value, the factor of safety being

over 100. While this beam is perfectly safe, it is not designed

for proper economy, since the compressive stress in the concrete

and the tensile stress in the steel might be much higher.

As another example, let 6= 48, d=$, h=i\, ^ = 4, ^ = 84

inches, a=2.4 square inches, and the total uniform load W be

6 000 pounds. Taking £2/-El = 10, (114) gives 5i'= 400 pounds

per square inch, which is greater than the tensile strength of the

concrete, so that these formulas do not apply. Turning then to

(114)' there are found ^=1.56 inches, 5i = 373 pounds per square

inch for the concrete and 52 = ii 700 pounds per square inch

for the steel, so that the beam has a proper degree of security.

The formulas of Art. 114 are vahd when the unit-stresses in

the concrete are proportional to their distances from the neutral

surface, and this is the case only when the changes of length

are proportional to the stresses. Concrete is a material in which

this proportionality exists only for low unit-stresses, so that the

validity of the formulas is sometimes questioned. Hatt has

deduced formulas under the supposition that the unit-stresses

vary with their distances from the axis according to a parabolic

law, and these will undoubtedly give a better agreement with

experiment than (114)' when the concrete is highly stressed.

For a case of design, howfiver, the prevailing opinion is that

formulas (116) should be used, and this has been the common
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practice since 1900. The general laws involved in formulas (114)'

are confirmed by experiments in which beams are ruptured,

although numerical values computed from the formulas are of

little reliability except as empiricar results similar to that of the

-computed flexural strength or modulus of rupture for beams of

one material (Art. 52).

The phenomena of failure of a reinforced concrete beam have

been completely ascertained by the very valuable experiments made

by Talbot in 1904. These beams were 12 inches wide, 13J inches

deep, 14 feet in span, and had the steel reinforcing bars 12 inches

below the top surface. Various percentages of metal werp" used,

ranging from 0.42 to 1.56 percent of that of the concrete, and

several kinds of reinforcing bars were employed. The beams

were tested by applying two concentrated loads at the, third

points of the span, and the deflections at the middle were measured

for several increments of loading, as also^ horizontal changes of

length. Under light loads the tensile resistance of the concrete

was plainly apparent; when the tensile unit-stress in the concrete

reached about 350 pounds per square inch, the neutral surface

rose and the stress in the steel increased. A little later fine

vertical cracks appeared on the tensile side, while the tensile

stresses in the steel and the compressive stress in the concrete

increased faster than the increments of the load. The last stage

was a rapid increase of the deformations, and rupture occurred

by the crushing of the concrete on the upper surface, the steel

being then generally stressed beyond its elastic limit.

In some cases reinforced concrete beams have been known to

fail by shearing near the ends, the curve of rupture being like that

shown by the broken lines in Fig. 109. The full investigation

of this case is attended with some difiiculty and will not here be

attempted, but the discussion of Art. 108 furnishes the means

of making approximate computations. It is only short beams

which fail in this manner. When rupture occurs near the middle

of the beam along a curved surface which roughly agrees with

one of the full lines in Fig. 109, this is not a case of shearing

but one of rupture by tension.
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The safe load which may be carried by a reinforced concrete

beam can be computed in five ways from the formulas of Art.

114. Under Case I the first step is to find k, and then to place

its value in the three following equations. Allowable values of

Si, Si, and ^2 being assumed, three compiltations maybe made to

find three values of 5 from which three values ofM are determined

;

then for uniform load W=SM/l and the smallest of the three

values of W is the one to be selected on the theory of Case I, where

no cracking of the concrete is allowed. Larger values of W will

be found by using the formulas of Case II, the first step being

to compute n, the second to find two values of M from assumed

values of Si and 52, and the third to compute two values of W,

the smaller of which is the safe load. Computations generally

show that a reinforced concrete beam is stronger after it has

cracked on the tensile side than it was before, this being due to

the fact that the steel then has a higher unit-stress. These cracks

may not be visible and they are often called hair cracks; they

exist whenever the unit-stress on the tensile side of the beam

reaches or exceeds the ultimate strength.

Prob. 115a. A reinforced concrete beam is 12 inches wide, 15

inches deep, 14 feet long, and has 3.6 square' inches at ij inches from

the lower side. Find the total uniform load W which this beam can

carry so that the tensile stress in the concrete on the lower side may
be 100 pounds per square inch.

Prob. 1156. Using the same data as above, compute the total

uniform load which will produce a compressive stress of 500 pounds

per square inch on the concrete, considering that the concrete below

the neutral surface offers no tensile resistance.

Art. 116. Design of Reinporced Concrete Beams

"When a reinforced concrete beam is to be built, its width,

depth, and span are given or assumed, as also the load which

is to be carried and the allowable unit-stresses for the concrete

and steel. The problem of design then consists in determining

the proper section area of the reinforcing bars and the proper

depth of the beam. As for the position of these bars, it is ap-

parent that they should be placed as near as possible to the tensile
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side of the beam in order that their resisting moment may be as

large as possible. They should, however, be entirely covered

by the concrete in order to be protected from corrosion due tc

atmospheric influences. ^ .

It is impossible lo design an economical reinforced concrete

beam on the theory of Case I of Art. 114, for if S' be taken even

as high as the ultimate tensile strength of the concrete, the values

of Si and 52 are too low; 52 for the steel is indeed always less

than Si, so that the strength of the metal is not utilized. Nothing

remains to be done, therefore, but to allow the concrete to crack

on the tensile side and thus bring proper tension into the steel.

If the tensile resistance of the concrete is not considered, formulas

(114)' apply. The given quantities are E2/E1 or e, the width b,

the unit-stresses Si and Si, and the bending moment M. Eliminat-

ing n from the three equations, there are found two equations

containing g and a, and the solution of these gives

^=.-^nI|? '=-^'^ «">
e+g l6M_

in which a denotes the ratio S2/S1. The unit-stress 5i should

be taken as high as allowable; 52 should not be higher than

the allowable value, but it may be taken lower, if economy in

cost is thereby promoted. The depth d is made about i^ inches

greater than g.

For example a beam is to be built of concrete which has the

proportions i cement, 3 sand, 6 stone, for which the ratio

£2/^1= £= 15- The span is to be 14 feet, the breadth 20 inches,

and the total uniform load is to be 7 000 pounds. It is required

to find the depth of the beam and the section area of the reinforc-

ing steel rods so that the unit-stresses 5i and 52 shall be 350 and

14000 pounds per square inch respectively. Here 47=40, and

M= lX'j 000 Xi4Xi2=i47 000 pound-inches. Inserting the

given values in the fires of the above formulas, there is found

^=13.0 inches, then bg= 260 square inches, and from the second

formula a=0.90 square inches. Here the section area of the

steel is 0.35 percent of the section of the beam above the centers
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of the rods. By using a lower value of 52, the depth g will be

smaller and the section area a will be greater than the above

values. The best set of values will be thoSe which render the

cost of the beam a minimum.

The position of the neutral surface depends only upon the

values of the ratios e and a. The value of n, as found from the

solution of the equations (114)', is

^- S „ »=-i_^ (116)'
i+a/e s-t-CF

Por instance, in the case of the last paragraph, where £ = 15 and

<T=4o, the value of n is 0.385 g, so that the neutral surface is 5.0

inches below the upper side of the beam.

Steel is the only material which has been advantageously

\ised for reinforcing rods in concrete beams, and the proper

section area should rarely exceed one percent of that part of the

concrete above the centers of the rods. With unit-stresses of

5 000 and 500 pounds per square inch for steel and concrete

respectively, the section area of the steel is 2^ percent of that

of the concrete when the ratio s. is 10 and 3 percent wJien e is 15,

but this is an excessive use of steel which is not economical. The
following are computed values of a/bg in percentages, and also

values of the ratio n/g:

S2/Si= IS 20 25 30 35

a/h= 1-33 0-83 0.58 0.42 , 0.32

n/g= 0.40 0.33 0.29 0.25 ^ 0.22

These apply to first-class concrete, for which e= 10. As a general

rule the most economic dimensions will be obtained by t3,king ^2

as about 30 times 5i for concrete made of i cement, 2 sand,

3 stone, while 52 should be taken as about 12 500 and 5i as

about 350 pounds per square inch for concrete of i cement,

3 sand, 6 stone, the ratio S2/S1 being here 35.

Beams having a section like that of Fig. llSd are sometimes

used, it being considered that only the upper part of the concrete'

is stressed in compression, while the tensile stresses in the lower

projecting parts are neglected. The design of these is hence

made by the formulas (114)', where n is the depth of the upper
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slab, g the depth from its upper Surface to the center of the steel

rods, and b the width of slab belonging to one rod. These

forinulas may be Vritten

/ a\ I bn
g=n(i-\—

I

a=
\ £/ 2 0-

from the first of which g is to be found for a given depth n,

while the second gives the metal section a. For example, let

E2/Ei = s = io, 52/51 = (7 = 25, w=4 and & = i8 inches; then

^'=14.0 inches and = 1.42 square inches. The safe load which

this beam can carry may be found from M=S-2a(g — Jw); for

instance, in the above case let 52=12500 pounds per square

inch, then the safe bending moment is 22 000 pound-inches.

Prob. 116. Consult a paper by Sewall and the accompanying

discussions in Transactions of American Society of Civil Engineers,

1906, Vol. 56. Ascertain different opinions as to what should be the

comparative cost of concrete and steel in order to produce the most

economical reinforced concrete beam.

Art. 117. Plate Girders

A plate girder is composed of only one material, usually

structural steel, but it may be called compound in the sense

that it consists of different parts riveted together. Fig. 117

shows a side view and section of a plate girder without the rivets

which connect the web to the angles and the angles to the cover

plates. In the section Aa there are four angles and the web;

to the right of the section Bb there are in addition two cover

plates; to the right of the section Cc there are four cover plates

in addition to the angles and web. The section areas and

moments of inertia are hence different in the three sections, the

plate girder being in fact an approximation to a beam of uniform

strength (Art. 58).

The flexure formula (41) niay be used to investigate the

istrength of a plate girder in exactly the same manner as if it

were a solid beam. Let /i be the moment of inertia of the uni-

form section between Aa and Bb, 12 that between Bb and Cc,

and Iz that between Cc and Dd. Then S=Mi . ci/Ii applies

to the first section, S=M2 .C2/I2 to the second section, and
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so on. By the help of this formula sections may also be found

to resist the bending moments imder a specified unit-stress S.

For example, let the load be uniform and expressed by w per

linear unit; let / be the length of the beam, and the three dis-

tances ab, ac, ad, be 0.2/, 0.35/^ and 0.5/. Then from Art. 38,

the bending moment at Bb is o.oSowP, that at Cc is 0.114W/2,

and that at Dd is o.i2$wP. Hence the value of Ji/ci is o.o8wP/S,

that of I2/C2 is 0.114.WP/S, and that of I3/C3 is o.i2^wP/S.

Sections of plates, angles and web may now be determined, with

the help of Art. 44 and Table 10, to satisfy these requirements.

Then the section A a must be investigated to ascertain whether

it is sufficiently large to safely resist the vertical shear ^wl.

^tUT

Fig. 117

Another method which is frequently used in practice is to

regard the web as carrying none of the bending moment, and to-

consider that the unit-stresses in the flanges are uniformly dis-

tributed so that the total stress in each flange may be regarded

as acting at its center of gravity. Let d be the depth between

the centers of gravity of the flanges, a the section area of one

flange, and S the allowable imit-stress. Then the stress Sa

in one flange acts with the lever arm d with respect to the center

of gravity of the other flange, and therefore Sad equals the bend-

ing moment M. Thus, for the first section ai =Mi/Sdi, for

the second section a2=M2/Sd2, and so on; from these values

of a proper angles and plates may be selected. The section

area of the web is determined in this method from the maxi-

mum vertical shear which can act at the end. The thickness

of the web is made imifonn throughout the span; f, ^ and f

inches are common thicknesses, as these are standard market

sizes. The web is usually stiffened by vertical angles riveted to

it at intervals.
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After a thickness has been determined for the web from the

vertical shear, it cannot generally be altered if the depth of the

girder is slightly changed on account of the requirement that

market sizes shall be used. There is then a certain depth, called

the " economic depth," which gives a smaller amoimt of mate-

rial than any other. For the simple case where the flange areas

are vmiform throughout, there being no cover plates, this eco-

nomic depth may be determined in the following manner. The

section area of each flange is M/Sd, and the section area of the

web is td The total volmne of material, neglecting rivets, splices,

and stiffeners. then is {2M/Sd+ td)l. Differentiating this with

respect to d, and equating the derivative to zero, gives d^ = 2M/St,

which determines the economic depth. This condition shows

that 2M/Sd equals td, that is, the girder has its economic depth

when the amount of material in the flanges is equal to that in

the web. This rule holds approximately when cover plates

are used, as shown by the investigations in Part III of Roofs

and Bridges, where are also given in full detail the methods

of designing plate girders for stringers, floor beams, and

bridges.

Prob. 117. A plate girder used as a floor stringer has a span of 22

feet, and the uniform load w per linear foot which is equivalent to the

actual wheel loads is i 700 pounds. For an eSective depth d of 34

inches, compute the flange areas at the middle and the quarter sec-

tions, taking 5 as 12 000 pounds per square inch.

Art. 118. Deflection of Compound Beams

The deflection of flitched beams, like those of Art. 112, is

readily computed, when the elastic limit of the material is not

exceeded, by the use of the formula f=WiP/aEiIi in which

Wi is the total load that comes on the material that has the

modulus of elasticity £1 and the moment of inertia /i. The
same method applies to the compound beams of Fig. 113a and

113&, but it does not apply when reinforcing bars are placed

only on one side of the neutral surface of a concrete beam. Con-
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crete-steel beams are usually of short span, and it is rarely neces-

sary to compute deflections. Formulas might, indeed, be devised

for this case, but they would be of imcertain application on

accoimt of the uncertainty in the value of Ei and because resist-

ing tensile stresses might not exist near the middle of the beam,

while they would act near the ends.

For plate girders it is sometimes important to compute the

deflection at the end of a cantilever arm or at the middle of a

simple span. For a simple span imder uniform load the deflec-

tion found in Art. 55 is f=^wl^/^84EJ, which apphes to a plate

girder where the moment of inertia I is constant throughout.

If /i is the moment of inertia of the section near the end and

13 that of the section at the middle, as in Fig. 117, then for these

values there may be found two deflections /i and /a, the first of

which is greater and the second less than the true deflection. It

is often the case that this information is all that is required, but

by the method of Art. 124 a formula giving a closer result can

be deduced. Let h, l^, h be the distances from the left end

in Fig. 117 to the sections Bb, Cc, and Dd, so that 4 is one-half

of the span /. Let the load be uniform so that the bending

moment at the distance x from the support is M = \wlx—^wx^.

Let m be the bending moment due to a load unity at the niiddle

of the beam or w = \x. Then, by (124),

f-=/t-=»rs--r>-r^:
gives the deflection at the middle under the uniform load. Inte-

grating between the designated limits, there is found,

^ 6£\/i I2 h I 8£Ui I2 h )

This formula is not difficult in computations when tables of

squares, cubes, and reciprocals are at hand ; thus h^/Ii is found

by taking h^ from the table and multiplying it by the reciprocal

of 7i.

The above gives the elastic deflection due to the horizontal

flexural stresses only. Art. 125 shows, however, that there is

a deflection due to the vertical shears which must be added to
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the above in order to obtain the exact deflection. Let V be the

shear due to the given uniform load and v be the shear due

to the load unity at the middle of the beam, so that V = ^wl—wx
andv = ^. Then, by (125),

J Fa Jo Fai J i, Fa2 Ji, Pas

in which ai, ^2, 0,3 are the section areas whose moments of inertia

are 7i, I2, I3, and F is the shearing modulus of elasticity. Per-

formiag the integrations, there is found,

2F\ai ^2 «3 ' 27^\ai 02 as I

which is the deflection' at the middle of the beam under the uni-

form load due to the vertical shears. The numerical value of

this shearing (Reflection is usually small compared to that due

to the bending moments, but in short spans it is an appreciable/

quantity.

Prob. 118. Deduce, from the above formulas, the deflections due

to vertical shears and bending moments when the simple beam has the

constant section area a and the constant moment of inertia /. Show-

that the length of beam for which these two deflections are equal is

given by (l/r)^=48E/^F, where r is the radius of gyration of the

section.
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Chapter XIII

RESILIENCE AND WORK

Art. 119. External Work and Internal Energy

When a- force is applied to a body it overcomes a resistance

through a certain distance and thus external work, is performed

on the body. It is usually the case that the force is applied by

increments, so that it increases uniformly and gradually from

t) up to its full value P. When a tensile load is applied in this

manner to a bar producing the elongation e, the work performed

is \Pe, or equal to the mean load JP multipUed by the distance e.

This is otherwise seen from Fig. 14a, where the shaded area

represents the work performed while the load increases from

o to P. Similarly, in the case of a beam under a single load,

the load increases from o to P and produces the deflection /,

so that the work performed is |P/. This work done upon the

bar or beam is called the ' external work '.

When the elasticity of the body is not impaired and the load

is applied so gradually that no work is expended in producing

heat, there is stored within the body an amount of energy equal

to the external work. This is called ' internal energy ', or some-

times 'internal potential energy ', because this energy may be

iitilized to perform an amoimt of work equal to the external

work performed upon it. When the elastic limit of the material

is not exceeded, the internal energy in a stressed bar is equal

to i^Pe and that in a beam stressed by a single load is equal to

^Pf. That these statements are correct, many experiments

•can testify, and they also follow from the law of conservation of

energy.

The internal energy which can be stored in a metal bar is

very small compared with that which is stored in a mass of steam

or compressed air of the same weight. For example, take a

bar of structural steel, 6 square inches in section area and 25 feet
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long. The load P which will stress this bar to its elastic limit

is P=6X3S 000=210 000 pounds, and the elongation under this

load is 6 = 35000X25/30000000=0.0292 feet; hence the work,

stored in the bar is 7^ = ^X210000X0.0292=3060 foot-pounds.

This bar weighs 8^X6X10X1.02 = 510 pounds (Art. 17), and an

equal weight of air will occupy about 6 320 cubic feet. If this air

is in a pipe of one foot diameter, it will fill a length of 8 040 feet,

and under a pressure of 15 pounds per square inch above the

atmospheric pressure, it may be compressed to half this length.

The force P here is i 700 pounds, and the energy stored in the

air is ^Xi 700X4020=3 517 000 foot-pounds, which is nearly

I 200 times as great as that stored in the steel bar. The mate-

rials of construction cannot, therefore, be advantageously used

for the storage of energy.

If the above steel bar is used as a simple beam with a single

load at the middle, the section being square, the load P which

will stress it to the elastic limit is found from the flexure formula

(41) to be P = I 143 pounds. The deflection / under this load

is found from Art. 55 to be 7=7.14 inches. Hence the energy

stored in the beam is JXi 143X7.14/12=340 foot-pounds, or

only one-ninth of that stored in the bar. Springs in the form

of beams are used on vehicles to tessen the shocks which occur

during motion, but they cannot be used to store energy for the

propulsion of a vehicle, on accoimt of the great weight which

would be required.

When a bar is afready vmder a load Pi which has produced

the elongation ei, an additional load P2 produces the elongation

€2, so that the total energy stored in the bar is \{Pi+P2) («i+«2),

as clearly appears from Fig. 119&. When P2 is removed, the

work that can be performed by the stored energy is that repre-

sented by the shaded area or J(2Pi-|-P2)e2- Or, if the load on

a bar ranges from the lower value Pi to the higher value P, as

in Fig. 119c, the elongation being ei'for the former and e for

the latter, then the work K performed on the bar, or the energy K
stored in it by the increase of Pi to P, is given by K = ^Pe— ^Piei.

Similarly, when a beam is under a single load which increases
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from Pi to P, while the deflection increases from /i to /, the

external work and the stored energy due to this increase are

iaoth expressed by K = \Pf-^Pxfi.

When a part of a bar is considered which has a length of

imity and a section area of imity, the load P is the unit-stress 5
and the elongation e is the unit-elongation s. Thus,

ir=i5e K=^\Ss-\Siei (119)

are the expressions for the work performed on one cubic unit

of the material, the first being for the case where the unit-stress

increases from o up to S and the second for the case where the

unit-stress increases from Si up to S.

A
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6=0.19 after annealing; here i£'=io30o inch-pounds for the

first and X = 14 icxi inch-pounds for the second, so that the

process of annealing increased 37 percent the capacity of the

steel to withstand external work. Another formula sometimes

used for unit rupture work is K=^e(Se+2Sj, where S^ is the

elastic limit and S„ the ultimate strength.

Prob. 119a. How many foot-pounds of work are required to stress

a wrought-iron bar, 4 inches in diameter and 54 inches long, from

6 000 up to 12 000 pounds per square inch ?

Prob. 1196. If this bar is used as a beam with a load at the middle,

how many foot-pounds of work are required to increase the greatest

unit-stress at the dangerous section from 6 000 up to 12 000 pounds

per square inch?

Art. 120. Resilience of Bars

The term " Resilience " is frequently used to designate the

work that can be obtained from a body imder stress when it is

relieved of its load. When the elastic limit of the material is

not exceeded this work must be that stored within the bar in

the form of stress energy. In Art. 14,> as well as in Art. 119,

it was shown that the external work performed in elongating

or shortening a bar is ^Pe, and this is the resilience which may
be utilized when the bar is entirely relieved from stress. Let

the section area of the bar be a and the uniform unit-stress be 5,

then P = aS; also let the length of the bar be I and the modulus

of elasticity of the material be E, then the change of length is

e = {S/E)l. Hence, the elastic resilience of the bar is,

K^^Pe or K=\{S^/E)al (120)

and the factor \S^/E is called the 'modulus of resilience ' of

the material when 5 is the imit-stress at the elastic limit.

The following are average values of the modulus of resilience

of materials which have been computed from the average con-

stants giyen in Arts. 4 and 9

:

for timber, iS^^/E= 3.0 inch-pounds per cubic inch

for cast iron, ^S^/E=^ 1.2 inch-pounds per cubic inch
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for wrought iron, ^S^/E=i2.^ inch-pounds per cubic inch

for structural steel, ^//£=2o.4 inch-pounds per cubic inch

Resilience is a measure of the capacity of a body to resist external

work, and. the higher the modulus of resilience the greater is

the capacity of a material both to store up energy and to resist

work that may be performed upon it. The modulus of resilience

measures this capacity up to the elastic limit only. The total

elastic resilience of a bar is found by multiplying the modulus

of resilience by the volume of the bar, as (120) shows. Thus,

a bar of structural steel, 6 square inches in section area and

25 feet long, has a volume of i 800 cubic inches, and hence its

elastic resilience is 36 720 inch-poimds or 3 060 foot-pounds.

When a bar is stressed by a load which increases from Pi

to P, the unit-stress increases from Si to S, and by (120) the

resilience of the bar when the load is decreased from P to Pi is

K=iiS^/E)al-i{Si^/E)al=i{S2-Si^)/E . al

Here, as before, the unit-stress 5 must not be greater than the

elastic limit of the material of the bar.

The word resilience implies a spring, and it should not be

used except for that part of the applied work which can be recovered

when the load is removed. When the elastic limit is exceeded

and the load is released, the expression ^{S^/E)al also applies,

as shown in Art. 14, to the work that can be utilized, but numerical

values of this resilience are of no importance when S is the ulti-

mate strength, because the capacity of a material to withstand

external work is properly measured by the product of its ulti-

mate strength and ultimate elongation, as explained at the close

of Art. 119.

Prob. I2O0. What horse-power engine is required to stress, 250

times per minute, a bar of wrought iron 18 feet long and 2 inches in

diameter from o up to its elastic limit ?

Prob. 1206. What horse-power engine is required to stress, 250

times per minute, a bar of wrought iron 18 feet long and 2 inches in

diameter from 12 500 up to 25 000 pounds per square inch?
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Art. 121. Resilience or Beams

When a cantilever beam deflects under the action of a load at

the end or a simple beam deflects tinder a load at the middle,

the external work is ^Wf as long as the deflection / increases

proportionally to the load which is applied by increments so

that it increases gradually from o up to the value W (Art. 119).

The resilience of the beam then equals ^Wf and an expression

for its value in terms of the flexural imit-stress 5 may tie obtained

by substituting for W and / their values from Art. 56. Let /

be the length of the beam, c the distance from the neutral sur-

face "to the upper or lower side of the beam where the unit-stress

is S, and I the moment of inertia of the cross-section ; then,

W=aSI/d f=aSP/PcE

where a is i for a cantilever loaded at the end and 4 for a simple

beam loaded at the middle, while ^ is 3 for the cantilever and 48

for the simple beam. Replacing I by ar^, where a is the section

area and r the radius of gyration of that section with respect to

the neutral axis, the elastic resihence of the beam is,

K=Wf=(ayp)(r/c)mS^/E) . al

in which ^(S^/E) is the modulus of resilience of the material

and al is the volume of the beam.

For either a cantilever or a simple beam the value of a^//?

is J. For a rectangular section the value of (r/c)^ is J; hence

for a rectangular beam under a single load, the elastic resilience

is K=^-^(S'^/E)al, which is one-ninth of that of a bar under

tension or compression. For a circular section, the value of

(r/c)2 is J, and it hence follows that its elastic resilience under

a single load is one-twelfth of that of a bar under axial stress.

For the / sections in Table 6 the value of (r/c)^ is about y'-j-, so

that their resihence is greater than that of rectangular or cir-

cular sections.

When a beam is uniformly loaded with w per linear unit the

load on any short length dx is w . dx, and if y is the deflection

at the point whose abscissa is x, the elementary external work

for a gradually apphed load is ^wy . dx. The integration of
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this over the entire length of the beam will give the total external

work of the uniform load. For example, take a cantilever loaded

uniformly; the value of y is given by the equation of the elastic

curve in Art. 54, and accordingly,

K={w'^li,^ET)j\zV^-Al^x^x^)^x=wn^li,oEI=Wn^l\oEI

is the external work of the uniform load. Substituting for W
its value in terms of S, and for / its value ar^, the resiHence of a

rectangular cantilever under uniform load is found to be K =

^.\{S^/E)al, which is three-fifths of that found for the concen-

trated load at the middle.

The above investigation shows that the elastic resilience of

a beam is proportional to the product of the modulus of resilience,,

the volume of the beam, and the ratio {r/c)"^. Since, however,

this ratio always has a numerical value which is the same for

similar sections, it may be stated as a general law, that the resili-

ences of beams having similar cross-sections are proportional to

their volumes.

The strength of a rectangular beam increases with the square

of its depth and its stiffness with the cube of the depth (Art. 56).

The resihence, however, increases with the section area. Hence

it is immaterial whether the short or the long side of the section

is placed vertical when the function of the beam is the resistance

of external work.

When the unit-stress increases from 5*1 up to S, the resihence

which can be obtained when the load is lessened so that 5 decreases

to Si may be found by replacing S^ in the above formulas by

S^ — Si^, as the discussion in Art. 119 shows.

Prob. 121a. Deduce an expression for the resilience of a rectan-

gular beam fixed at both ends and uniformly loaded; also, when fixed

at one end and supported at the other.

Prob. 1216. Compute the horse-power required to deflect, 50 times

per second, a wrought-iron cantilever beam, 2X3X72 inches, so that

at each deflection the unit-stress 5 may range from 5 000 to 10 000

poxmds per square inch.
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Art. 122. Resilience in Shear and Torsion

The elastic resilience of a body under the action of shear

is governed by similar laws to that of tension and flexure, namely,

it is proportional to the square of

the maximum unit-stress and to the

I
volume of the body. Thus in Fig.

122 let a vertical shear act upon a

parallelopiped of length / and sec-

tion area a, deforming it into a
^'

rhombopiped. The figure repre-
^'

sents a short beam with a load P
at the end, so that the shear in every vertical section is equal to

P, and the shearing imit-stress is S,=P/a. The external work

done by the load P, supposing it to be gradually appUed, is ^Pe,

where e is the distance through which P deflects. This work is

stored in the body in the form of stress energy, and is equal to

its elastic resilience. Now P=aSg and from (15) the unit-

detrusion is e = (Sa/F)l, where F is the shearing modulus of

elasticity. Therefore

K=iPe=i{SJ'/F)al (122)

is the resilience or the work obtainable from the stored energy

when the load P is removed provided the unit-stress 5, is not

greater than the shearing elastic limit of the material.

The resihence of a shaft imder torsion can be determined

in a manner similar to that of beams. When a round shaft is

twisted by a force P acting with a lever arm p, as in Fig. 90,

each element da of the section is subject to a shearing unit-stress 5,

and to a total stress 5, . da. The internal energy or resihence

for this element is then ^S,daXe, where e is the deformation

caused by the shear. Since e = (Sa/F)l is the deformation in

the distance /, the internal energy stored in the element of area

3a and length dx is,

dK'=iSM . {SjF)l=i{S,^/F)l . da

Now let 5 be the shearing unit-stress at the circumference most

remote from the axis, and let c be its distance from that axis;
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ako let z be the distance of da from the axis. Then, since the

stresses vary as their distance from the axis, 5g equals 5 . z/c.

Inserting this in the above expression and integrating it over

the cross-section, Ida . z^ is replaced by J, the polar moment

of inertia, or by ar^, where r is the polar radius of gyration. Thus

are foimd,

K=i(S^/F)lJ/c^ or K=i(S^/FXr/c)^al

for the internal energy or resilience of the shaft. Now al is

the volume of the shaft, and it is thus seen that the resiliences

of circular shafts are proportional to their volumes. Hence the

resilience of a shaft imder torsion is governed by laws similar

to those of a beam xmder flexure (Art. 121).

The formula here estabhshed is only valid when the greatest

unit-stress S does not surpass the elastic Umit for shearing.

When 5 corresponds to the elastic limit, the quantity ^S^/F

may be called the modulus of resilience for torsion or shearing,

in analogy to the modulus of resihence for tension or compres-

sion (Art. 120).

, As an example, let it be required to find the work necessary

to stress a steel shaft 12 inches in diameter and 30 feet long up

to its shearing elastic limit of 30 000 poimds per square inch.

Here 5=30000 and 2*" = 11 200000 pounds per square inch

(Art. 93); also, c=6 inches, = 113.1 square inches, J =-^d* =
\ad^ = 20^6 inches*, / = 36o inches. Inserting all values, K is

found to be 818000 inch-poimds or 68200 foot-pounds; to

produce this stress in the shaft in one minute, more than 2 horse-

powers are required.

The resilience of a shaft under torsion is measured by the work

required to produce a given unit-stress S, and from the above

discussion this is seen to vary with {r/c)^. To compare the

resilience of a hollow shaft of outside diameter d and inside

diameter di with that of a solid shaft having the same section

area, it is hence only necessary to compare their values of r^/c^.

Let (^2 be the diameter of the solid shaft ; then for the two cases,
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and accordingly, representing the ratio_ i\li by k, there is found,

hoUow/solid= (k2+ i)/«2

which is the ratio of the resilience of a hollow shaft to a solid

one of the same section area. If the outer diameter of the hollow

shaft is double the inner diameter, the resilience of the hollow

shaft is 25 percent greater than that of the solid one.

Prob. 122a. Compare the resiliences of a solid shaft 16 inches in

diameter with that of a hollow shaft 18 inches in outside and 8 inches

in inside diameter.

Prob. 1226. A simple beam of section area a and span I has a load

P at the middle. Show that the resilience due to the vertical shears

is PH/?,aF.

Art. 123. Deflection under one Load

By the help of the preceding principles regarding work, a

method will now be established by which the internal energy

stored in a beam may be expressed in terms of the bending mo-

ments. Using the same notation as in Arts. 40, 41, the horizontal

unit-stress at any distance z above or below the neutral axis is

S . z/c. In the horizontal distance 8x the change of length due

to this unit-stress is by (10) known to be (Sz/cE)dx. The ele-

mentary work of a fiber of area da under the gradually applied

unit-stress hence is ^(Sz/c) 8a(Sz/cE) dx. Accordingly the work

8K stored in all the fibers of the cross-section in the distance Sx

is foimd by summing the works of all the fibers. Noting that

Ida .z^ is the moment of inertia /, and that the value of S/c

is M/I from the flexure formula (41), there is found,

^^^ M^x
'

^ CM^bx
dK=—=v- or A =

--r-2E1 J 2E1

the second of which gives the total stored energy. By expressing

the bending moment M as a function of :*; and integrating the

expression over the entire length of the beam, K can be found

for any particular case.

For example, consider a cantilever beam loaded at the end

with P. Here M= -Px, and inserting this and integrating
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between the limits o and I gives K=PW/6EI for the total stored

energy due to a load gradually applied at the end. Again con-

sider a cantilever beam loaded uniformly with w per linear imit

;

here M=—\wx^, whence by integrating results K=vP'V'l\oEI\

or if W is the total uniform load, K^WW/zipEl, which is -^ of

that caused by the same load applied at the end.

The formula (123) furnishes a new and convenient method

of determining the elastic deflection of a beam under a single load

P. Let / be the deflection under the load. Then \Pf is the

external work done by P as it gradually increases from o up to

the value P, and this must equal the stored energy K, whence,

W=K or Bf=f^ (123)

gives the deflection imder the load, For example, take a simple

beam loaded at the middle with P; the value of M is \Px,

and the total integral is twice the integral taken between the

limits o and \l. Accordingly,

rv
whence / =-

which is the same result as that deduced in Art. 55 by the use

of the equation of the elastic curve.

The deflection of the metal part of the flitched beam of Fig.

1126, when the length of the metal is less than that of the timber,

can readily be fovmd by the use of (123). Let / be the span of

the simple beam and d the distance from each end of it to the end

the metal plate. Let P2 be the single load at the middle which

is borne by the metal, then M= \P2X, but in the integration

the limits must be between \l and d. Let I be the moment of

inertia of the metal section arid E the modulus of elasticity of

the metal. Then,

'f'-L
— whence ./= ^

aEI
'

48£/

is the deflection of the metal at the middle of the beam, and the

statement made in the last paragraph of Art. 112 is therefore

justified.

The above method is not applicable to the determination of



314 Resilience and Work Chap.xiii

the deflection at any point of a beam, except that under the single

load P, nor can it be used for several single loads or for a uniform

load. The method to be pursued in such cases is developed in

the next article.

Prob. 123. Deduce, by the above method and also from Case III

of Art. 55, the deflection under a single load P which is placed on a

simple beam at a distance \l from the left support.

Art. 124. Deflection at any Point

Consider a beam of any kind, loaded in any manner, and

let it be required to find the deflection at a given point. Let a

weight P be imagined to be put at this point, this being either

a part of the weight of the beam concentrated there or a single

load supposed to be there. • The deflection at Jhis point due

to all the loads on the beam being /, the work of the weight p

is Jp/ and this must equal the internal energy throughout the

beam due to that weight p.

Let X be the distance of any section of the beam from an

assumed origin, 5 the imit-stress on the extreme fiber of this sec-

tion at the distance c from the neutral axis, and (5. z/c)da the

stress on a fiber of area 8a at a distance z above or below the

neutral axis, both of these being due to all the loads on the beam.

Let s and s . z/c be the corresponding imit-stresses due to the

weight p ; the change of length in the fiber of area da in the hori-

zontal distance 8x, due to the weight p, is (sz/cE)dx, and the

work in this fiber due to p is l{Sz/c) da(sz/cE)dx. The sum-

mation of all values of this product, first throughout the section

and secondly throughout the length of the beam, gives the in-

ternal energy due to p. Now I8a . z^ is the moment of inertia

J; the value of S/c is M/I, where M is the bending moment due

to all the loads on the beam, and the value of s/c is m/7, where

M is the bending moment due to the weight p. Accordingly,

equating the external work to the internal energy, and extending

the integration over the length of the beam, there results,

-f=J^r °' ^=J^I~ (124)



Art. 124 DErLECTION AT ANY PoiNT 315

both of which give the deflection / at any point of the beam;

in the first m is the bending moment due to any weight p at that

point; in the second M' is the bending moment due to the weight

unity at that point. By inserting for M and M' their values in

terms of x, and integrating, the deflection / is readily found.

-4,

Fig. 124a Fig. 1246 Fig. 124c

For example, let it be required to find the deflection at the

end of a cantilever beam due to a load P placed at a distance

d from the left end, as in Fig. 124ffl. On the left of the load

M=o, and on the right of the load M= —P(x—kI), where x

is measured from the free end. Placing a weight unity at the

end, the bending moment due to it is M'=—x throughout the

entire length of the cantilever. Thus MM'=o on the left of

the given load and MM' =P{x^— dx) on the right. The formula

then furnishes,

EIf= \ P{pc^-dx)dx=\PP{2-T,ii-{-K?)

which gives the deflection of the end due to P- When /c=o, the

load is at the end ax\.df=PP/2,EI, as otherwise found in Art. 54.

As a second example, let it be required to find the deflection

of the right end of the overhanging beam in Fig. 124&, the load

being uniform throught. Let / be the span and d the length

of the overhanging arm. The left reaction due to the uniform

load is \wl{i - H?), whence M=\wl(i - ii^)x- \wx^ for the span I;

for the overhanging arm let x be any distance from the right end,

then M= ^wx^. For a weight unity at the end of the overhang-

ing arm, the left reaction is — «, whence M'=—kx for the span I;

for the overhanging arm M'=x. The deflection formula then

gives

£//= -/ iw(dx^- K^ifi- K3(^8x+ J\w3^d<K= - ^wI*{k-ak^- 3 «4)

from which /is known for any value of k. For instance, let «= J,

then/= - i5w/V2048£/, the minus sign showing that the deflec-
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tion is upward, because at the beginning of this article positive

values of / were measured downward. For a longer overhang-

ing arm, however, /may be positive; this is the case when k=|.

When a cantilever beam deflects, the free end suffers a hori-

zontal displacement which may be derived from (124), taking

the force unity as horizontal, and using the equation of the elastic

curve. For Fig. 124c, where the load P is at the end, the elastic

curve has the equation y=fi{2p—2Px+o(^)/2p,'^]iQx& f\ is the

vertical deflection under the load (Art. 54). Now let the hori-

zontal force unity be applied to the free end where the horizontal

displacement is /; its moment is M'= — {f\—y) and the moment
of P is M= —Fjx. Then the formula (124) becomes,

EIf=pl{fr -y{xdx= iPfi/2p)fj3px^-x^)dx

from which the horizontal displacement of the end of the beam

may be found to be /=6/iVsA which is very small compared

with the vertical deflection of the end.

The above examples show the great value of formula (124)

in discussing all questions regarding the elastic deflections of

beams. It may be used to find the equation of the elastic curve

also, taking / as the ordinate corresponding to the abscissa x.

It applies, however, only to cases where the greatest flexural

unit-stresses do not exceed the elastic limit of the material.

When I is not constant, it is to be expressed as a fimction x

before the integration can be made.

Prob. 124a. Find by the above method the equation of the elastic

curve 'for a simple beam uniformly lo'aded, and compare it with that

deduced in Art. 55.

Prob. 1246. A simple beam has two equal concentrated loads

placed at equal distances from the supports. Deduce the deflection

under one of the loads, and also the deflection at the middle of the

beam. ^

Art. 125. Deflection due to Vertical Shear

The treatment of the deflection of beams in the previous

pages has been solely from the standpoint of the horizontal
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stresses caused by the external bending moment. Art. 122 shows,

however, that internal energy is stored in a beam by a vertical

shear, and it hence appears that the former investigations are

more or less incomplete in neglecting the deformation which is

caused by the external vertical shears.

Referring to Fig. 125 let V be the vertical shear which has

produced the vertical detrusion 8f in the short length dx. Let a

be the section area of the beam, F the

shearing modulus of elasticity. The
shearing unit-stress in the section is V/a

and this will be considered as uniformly

distributed. The internal work in the

length dx is |F . 8f when V increases „. ,25

gradually from o up to V. Now from

the definition of F in Art. 15 it is known that 8f=(V/aF)dx,

since 8f/dx is the imit-detrusion that is due to the unit-shear V/a.

Accordingly the whole internal energy due to shear in the length

8x is 8K= ^(F^/ aF) dx. When / is the deflection under a single

load P, the external work is ^Pf. Accordingly,

are expressions for the total internal energy due. to shearing,

and the deflection / under a single load P- ,

For instance, a simple beam with a load P at the middle

has the shear V=iP. Then by taking double the integral

between the limits o and ^ there is found K= PH/8Fa for the

internal energy or resilience due to the shears throughout the

beam. The deflection under the load due to the vertical

shear then is f—PII/(Fa. In Art. 55 the deflection due to the

bending moments was found to be Pl^/z^iEI. Accordingly the

ratio of the shearing deflection to that of ihe flexural deflection

is i2EI/FaP, which reduces to 12{E/F){r/IY, where y is the

radius of gyration of the section. For a cast-iron beam the

ratio E/F is about 2.5; if the section is square the ratio of the

shearing to the flexural deflection is 2.^{d/l)^, where d is the side
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of the square; when the length of the square beam is 30 times

its side, this ratio is -^jf, so that the deflection due to shearing is

small compared with that due to the moments; for a short beam,

such as l=.2d, this ratio is 0.625, so that the deflection due to

shearing is 62^ percent of that due to the moments.

In 1870 Norton called attention to the inaccuracy of the

ordinary formula for deflection in the case of short beams. Experi-

ments on white-pine beams of different lengths and sizes were

made with loads at the middle of the spans, and it was shown
that the deflections were directly proportional to the loads and

inversely proportional to the breadth of the beam, as the com-

mon fortnula requires. The deflections were, however, not

directly proportional to the cubes of the spans nor inversely pro-

portional to the cubes of the depths of the b'eams, as the formula

requires. An examination into the reason of these discrepancies

showed that it was due to influence of the vertical shears, and

Norton showed that the quantity C . Pl/bd should be. added

to the common flexure formula in order to satisfy the results

of his experiments; he further showed that the quantity C had

the value coco 00094 for the white-pine beams. From the

theoretic value deduced in the last paragraph it is seen that

4F is the reciprocal of this number, whence i^=266ooo pounds

per square inch, which should be the modulus of elasticity for

the shearing of white pine across the grain. This is probably

not far from the actual value of that coefficient, since Thurston,

by experiments on torsion, foimd F=22o 000 poimds per square

inch for white pine. The experiments of Norton, therefore,

confirm the above theory of the deflection of beams due to

shearing.

Formula (125) does not apply to the deflection at any point,

or to any kind of loading except a single load P. For any other

case let any weight p be aj: the point where it is desired to find the

deflection, and let v be the shear due to this weight. The external

work due to p is ^p/, where /is the required deflection. The in-

ternal work in any elementary distance. 5a: is one-half of the prod-

uct of the actual shear V and the detrusion (v/aE)§x. Therefore
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^^8x or f=Jy^^- (125)'

are expressions for finding the deflection due to shearing; in the

first V is the shear due to any weight P and in the second V is

the shear due to the weight unity at the point where the deflec-

tion is desired.

For example, take the case of Fig. 124a and let it be required

to find the deflection at the end due to shearing when a single

load P is at the distance d from the left end. Let x be measured

horizontally from the free end where the weight imity is placed.

Then F=o on the left of the load and V=—P on the right of

the load, while F' = — i throughout the beam. Then from (125)',

Faf= C P8x=Pl{i-k) or f=(i-k)Pl/Fa

gives the deflection at the end due to the vertical shears. When
K=o, the load P is at the end and F=Pl/Fa; the ratio of this

to the deflection due to the moments is ^(E/F)(r/l)^. This

shows that the deflection due to the shears is scarcely appreciable

in long beams; for short beams, however, it may be larger than

that due to the moments.

By measuring the elastic deflections of two beams of different

lengths but of the same material, it is possible to compute the

values of E and F for that material. The deflections thus meas-

ured are due both to moments and shears and hence an ex-

pression for each measurement is to be written in terms of E
and F. Let li and I2 be the spans, ai and aa the section areas,

7i and I2 the moments of inertia, and Pi and P2 the loads at the

middle of the simple beams. Let the measured deflections be

/i and /2. Then may be written,

48/1 £ 4^1 F '^ 48/2 £ 402 -F
^^

which contain the two unknown quantities i/E and i/F, and

hence the solution of the two equations will furnish the values

of the common modulus E and the shearing modulus F. By

making many experiments instead of two, writing an equation

for each, and solving the equations by the method of Least Squares,
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it is possible to obtain reliable values of these moduluses of elas-

ticity. In such experiments it is of course important that the

loads should not be heavy enough to stress the material beyond

its elastic limit.

In conclusion it may be noted that there is an elastic curve

due to vertical shears, and its equation may be used in similar

manner to that of the bending moments. From Fig. 125, the

general equation of this elastic curve is,

dy V ' Jy ,^

For example, let it be required to find the elastic curve and the

deflection due to vertical shears for a simple beam' of span /

loaded uniformly with w per linear unit. Here 'V=^'wl—wx,

and inserting this in the general equation and integrating there

is found aFy = ^w{lx—x^) for the equation of the elastic curve.

The maximum deflection occurs at the middle where x=\l, and

its value / = wP/^iaF, and this agrees with the result which will

be found by the use of (125)'.

Prob. 125a. Find the deflection of the end of the overhang in

Fig. 124& due to the vertical shears of the uniform load.

Prob. 125i. A timber beam 9 inches long and 2 inches square is

placed on supports 7 inches apart and subject to deflection by a load

of 300 pounds at the middle. Compute the amount of the deflection

due to the vertical shears and that due to the bending moments.

Art. 126. Principle of Least Work

There is a certain law of nature called the principle of least

work, which is of great value in discussing problems in mechanics

that cannot be solved by static conditions alone. For example,

a table with four legs is a system where the reactions of the legs,

due to an unsymmetric load on the table, cannot be found by

statics, since the three conditions of static equilibrium cannot

determine four unknown quantities. The principle of least work

furnishes, however, a fourth condition when the stresses in the

legs do not exceed the elastic limit of the material.
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When a structure is so formed that the stresses in it cannot be

determined by statics, it is said to be a "redundant system", and

the principle of least work applicable to it is as follows

:

The .stresses in a redundant system have such values

that the internal energy of all the stresses is a minimum.

This is sometimes regarded as an axiom, it being considered that

the resisting forces will store up no more energy than the minimum

which is necessary to maintain equilibrium with the external

forces. The following proof, however, will probably be more

satisfactory than the assumption of the axiom. Let Pi, P2, .'.
. Pr

be r forces in equilibrium, and let a small displacement be made,

without performing work on the system, so that the points of

apphcation of these forces move through the small distances

dei, de2, . . . de^. Then the total work done must be equated to

zero, or, P^dei^ P2de2+ P3des+ . . . +PAr=o

and for all cases of stable equilibrium it is a law of mechanics

that the integral of this shall be a minimum, or,

Piei+-P2«2+-P3«3+ • • • +Prer=a minimum

in which ei, 62, ... e, are the total distances through which the

forces have moved in acquiring the state of stable equilibrium.

Now each of the quantities Pe is double the work done by the

appUed force P as it increases from o to P, and hence also equal

to double the energy stored by the stresses that balance it. There-

fore, the internal work or stored energy of all the resisting stresses

is a minimum.

When forces act upon elastic bodies, in which the defor-

mations are proportional to the stresses, the above principle of

least work may be applied to determine unknown reactions

when the conditions of statics are not sufficient in number to

do so. Many problems of fixed and continuous beams may be

discussed by the aid of this principle. For example, take a con-

tinuous beam of two equal spans loaded uniformly in the second

span, as in Fig. 126o, and let it be required to find the three reac-

tions i?i, R2, P3. The first condition of statics is that the sum

of the reactions equals the total load, or Ri+R2+Rs=W; the
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second condition is that the sum of the moments of the reactions

equals the moment of the load, whence, for an axis at the right

end, 2Ril+R2l = ^Wl. The third condition is that the internal

energy of all the flexural stresses shall be a minimum. For the

first span the bending moment at the distance x from the left

support is M=Rix; for the second span the moment at the

distance x from the right support is M=R3X—^wx^. Then,

by Art. 123, the total internal energy of the horizontal flexural

stresses is,

K^ n^'sx+ f'ij^^z^,.
7o 2E1 j„ 2E1

{2oRi^+2oRi-isRzW+2,W^)
120EI

Differentiating this, and equating the derivative to zero, gives

the equation 8R1 . dRi+SRadRs-^W . dR3=o as the condition

of least work. Solving the three equations thus established,

there result Ri = -W, ^2= +W> R3=+W for the reactions

due to the given load; these are the same results as derived by

the use of the theorem of three moments (Art. 71).

•3 zS zs- 7S zs
" a a-

1 2 a. 1 3 34
Fig. 126a Fig. 1266

As a second example, take the partially continuous girder

in Fig. 126J which has four supports and a joint at the middle

of the second span so that the bending moment there is always

zero. Let 2I be the length of the middle span and I that of each

end span, and let it be required to find the four reactions due

to a uniform load in the last span. Three conditions are,

Ri+R2+R3+Ri=W 4Ri+2R2+R3=W 2i?i+J?2=o

the first being the static condition that the sum of the vertical

forces is zero; the second the static condition that the sum of

the moments of these forces is zero, the axis being taken at the

right end; the third the condition that there is no moment at

the joint. From these three conditions the values of three reac-
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tions may be found in terms of the other reaction, thus,

R2=-2Ri R3=W+2Ri Ri=iW-Ri

and the value of Ri may be found by the help of the principle

of least work. To do this an expression for the bending moment

is found for each of, the four parts of the beam and the sum of

all the values of M^liEI wiU give the total internal work of the

flexural stresses (Art. 123). Thus, in a manner similar to that

of the last paragraph, a fourth condition is established which

expresses that the work of the internal stresses is a minimum.

This equation, in connection with the three previously estab-

Hshed, gives i?i = -i^W, R2 = +AW, Rz = +UW, i?4 = +UW.
These are the reactions for the given uniform load due to the

bending moments, and they wiU be slightly modified if the ver-

tical shears are taken into account.

Examples of the appUcation of the principle of least work to

bridges and arches will be found in Parts I and IV of Roofs

and Bridges. This principle must be used with caution by the

beginner, but it is one of much value in the discussion of struc-

tures which are statically indeterminate.

Prob. 126. A table of length I and width h has four legs at the

corners which are of equal size and length. For a load P placed on

the table at a distance il from the side h and a distance ih from the

side /, compute the reactions of the leg nearest the load.
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Chapter XIV

IMPACT AND FATIGUE

Art. 127. Sudden Loads and Stresses

A load at rest on a bar or beam is caUed a ' static load '.

The same term is applied to a load which increases from o up

to its final value P in such a way that the deformations of the

bar or beam at different instants are proportional to the loads

acting at those instants until the elastic limit of the material is

exceeded. Loads applied in any other manner are sometimes

called ' dynamic ', and the term " impact " implies either sud-

denness of action or that the load is in motion before it is applied

to the bar or beam. Static loads have been mostly considered

in the preceding chapters, but it has always been recognized

that the stresses and deformations due to sudden and variable

loads are greater than for static ones (Art. 7). The terms

' dynamic stress ' and ' dynamic deformation ' are sometimes

used to distinguish the effects of impact from those due to static

loads.

A static tensile load is usually applied to a bar by increments,

so that it increases from o up to P in such a way that the elonga-

tion is proportional to the load until the elastic limit of the mate-

rial is reached. The work done upon the bar is then equal

to the mean load ^P multiplied by the elongation e, or K=\Pe.

Simultaneously the stress in the bar increases from o up to P

and the internal energy stored in the bar is.^Pe. The triangle

in Fig. 127a represents both the external work and the internal

energy.

When a load is applied to a bar in such a manner that its

intensity is the same from the beginning to the end of the elonga-

tion, it is called a "sudden load ". For instance, let a load be

hung by a cord and just touch a scale-pan at the foot of a vertical

bar; then if the cord is quickly cut, the load acts upon the bar

with uniform intensity throughout the entire elongation. In
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this case the maximum elongation is greater than for a static

load, but the bar at once springs back, carrying the load with

it, and a series of oscillations ensues, uiltil finally the bar comes

to rest with an elongatioij, due to the static load. Here the stress

in the bar increases from o up to Q, the stress Q being equal

to the static load which would produce the maximum elongation.

Fig. 1276 represents this case, where the rectangle shows the

work done by the instantaneous load P, and the triangle shows

the internal energy stored in the bar at the instant of greatpst

elongation. The unit-stress due to Q must be less than the elastic

limit in order that the following discussions may be valid.

Fig. 1270

Let q be the maximum elongation due to the sudden load P;

the work performed in the bar is Pq. The internal energy

stored in the bar at the instant of greatest elongation is ^Qq,

since the stress increases from o up to Q. Hence hQq=Pq, or

Q = 2P. Let e be the elongation diie to the static load P; then

q/e=Q/P, and hence also q=2e. Accordingly the following

important law is established for a bar under elastic changes of

length:

A sudden load produces double the stress and double the '

deformation that is caused by a static load. ^

Fig. 130fl shows the end. of a bar acted upon by a sudden load

and it will be explained in Art. 132 that the maximum velocity

of the load occurs when the elongation is equal to e; the curve

in the figure shows the variations in velocity. When the elonga-

tion 26 is reached, the stress in the bar is 2P and the resultant

force tending to move the end is P— 2P or —P; hence the end

moves backward and oscillations ensue, until finally the bar comes

to rest under the elongation e and the stress P.
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In the above discussion P and Q are the total stresses on

the section area a of the bar. Let S and T be the corresponding

unit-stresses, so that P= Sa and Q = Ta. Then the equation

Q = 2P becomes T=2S, that is, the unit-stress due to a sudden

load is double that due to the same static load.

Similar conclusions result when a single load P is suddenly

applied to a beam producing the deflection q while under the

same static load the deflection is /. Let Q be the static load

which will produce the deflection q. Then the external work of

this static load is ^Qq, while that of the sudden load is Pq; hence

iQq=Pq or Q = 2P; that is, the sudden load P produces the

same effect as a static load 2P. From the static law Q/P=q/f,
it follows that q= 2f, so that the dynamic deflection is double

the static deflection. Let 5 be the flexural unit-stress at the

dangerous section of the beam when the deflection is / and let

T be the unit-stress when the deflection is q; then q/f=T/S,

since elastic deflections are proportional to the unit-stresses

(Art. 2). Therefore also, T=2S, that is, the flexural unit-stress

due to a sudden load is double that due to the same static load.

Lastly, consider a bar upon which rests a load Pi caiising the

elongation ci. Let a sudden load P be now brought upon it

causing the additional elongation q and the additional stress Q.

Fig. 127c represents this case and it shows that the elongation is

ei + 2e and that the final stress is P1 + 2P; thus the instantaneous

load produces its effect independently of the other. As soon as

the elongation ei + 2e occurs, the bar springs back, and a series

of oscillations follows; finally the bar comes to rest under the

elongation ei+e and the stress Pi -I- P. Similar conclusions fol-

low in the case of a beam under an initial load..

In the- above investigation it has been supposed that all the

work Pq performed by the sudden load P is expended in storing

energy in the bar or beam. This is not strictly the case, for

internal molecular frictiofi causes a slight loss of w ork (Art. 147).

The law deduced is, however, very close for a light beam, but Q
is really a little less than 2P and q is a little less than 2e when the

beam is heavy compared with the load.
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Prob. 127. A vertical steel bar, 2 inches in diameter and 13 feet

long, has a load of 15 000 pounds hung at its end. Compute the

elongation due to this static load, and also the maximum elongation

which occurs when an additional load of 7 500 pounds is suddenly

applied.

Art. 128. Axial Impact on Bars

The wofd impact is here used to mean the effect of a load

which is moving when it strikes the end of a bar; such a load

evidently produces a greater deformation and a greater stress

than one applied suddenly. The stress in the bar increases

from o up to a certain limit Q and the deformation increases

from o up to q. If the elastic limit of the material is not ex-

ceeded, the stress at any instant is proportional to the deforma-

tion so that the stored energy of the internal stresses is \Qq.

Equating this to the external work, the values of Q and q may

be found.

Let P be a weight which is moving horizontally with the velocity

V at the instant it strikes the end of a light horizontal bar. Its

kinetic energy is P . V^/2g, where g is the acceleration of gravity;

or, if h is the height through which P has fallen to acquire the

velocity V, then 'V^/2g= h, and the kinetic energy of the moving

weight is P .h. Accordingly \Qq= Ph, if no work is expended

in overcoming inertia or in friction. Now, let e be the elongation

of the bar due to the static load P ; then the law of proportionality

gives q/e=Q/P. From these two equations are found,

Q=P{2k/e)i q=e{2h/e)i={2he)i (128)

which shows that Q may be much greater than P and q much

greater than e when the weight P is moving rapidly. For example,

let F=io feet per second, then /j= 100/2X32.2 = 1.55 feet= i8.6

inches. Let the weight P be 60 pounds and the horizontal bar

be of steel 18 feet long and 3 square inches in section area, then

(10) gives e=P//a£=c.ooo 144 inches. Accordingly, ^ = 30500
pounds and §'=0.073 inches, which are about 510 times as great

as those due to a static load of 60 lbs.

When a vertical bar is subject to the impact of a falling weight
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P, the end of the bar is elongated or shortened the amount q

so that the work performed upon it is {P{h+ q). The internal

stored energy is \Qq as before. Accordingly the two equations

\Qq=P{h+q) and q/e=^Q/P are to be used to find the values

of Q and q, which are,

Q=P-\-P{i+ 2h/e)^ q=e+e{i+ 2h/e)'> (128)'

When h=o, these formulas reduce to Q = 2P and q=2e, which

are the results previously foimd for a sudden load. Since e is a

small quantity, it follows that a load dropping from a moderate

height may produce large stresses and deformations. Experiments

made upon elongations of spiral springs give results which closely

agree with those computed from the formula for q, when the

elastic limit is not surpassed by the stress Q. The curve in

Fig. 1306 shows the variation in velocity of the end of the bar.

The effect of loads applied with impact is therefore to cause

stresses and deformations greatly exceeding those produced by

the same static loads, so that the elastic limit may perhaps be

often exceeded. Moreover the rapid oscillations which ensue

cause a change in molecular structure which impairs the elasticity

of the material when such loads are often applied. It is some-

times found that the appearance of a fracture of a bar which has

been subject to shocks is of a crystalline nature, whereas the

same material, if ruptured under a gradually increasing stress,

would exhibit a tough fibrous structure. Moving loads which

produce stresses above the elastic limit cause the wrought iron

and steel to become stiff and brittle, and hence it is that the work-

ing imit-stresses should be taken very low (Art. 7).

The above formulas apply also to unit-stresses. Let a be

the section area of the bar, 5 the unit-stress due to the static

load P and T the unit-stress due to Q, so that S=P/a and T =

Q/a. Then the formulas for Q in (128) and (128)' become,

T=S{2h/e)i T=S+S(i + 2h/e)i (128)"

the first of which applies to a horizontal bar and the second to a

vertical bar. For instance let h=i8e, then T=6S for the hori-

zontal and 7" = 7.085 for the vertical bar. Here T is the unit-
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stress which prevails in the bar at the instant of greatest defor-

mation, but after a series of oscillations the bar comes to rest under

the unit-stress S. These oscillations are discussed in Art. 132.

AH of the above formulas for dynamic stress and elongation

give results which are somewhat too large, because a portion of

the energy of the moving weight P is expended in overcoming

the inertia of the bar. They apply only to bars which are so

light that this resistance of inertia may be disregarded. In

Art. 130 it will be shown how these formulas may be modified

so as to take into accoimt the inertia of the bar.

Prob. 128. In an experiment upon a spring, a static load of 14.79

ounces produced an elongation of 0.42 inches, but when dropped

from a height of 7.72 inches it produced a stress of 102.3 ounces and

an elongation of 2.90 inches. Compare theory with experiment.

-> Art. 129. Impact on Beams

When a falling weight strikes a beam, it causes a greater

deflection than a load suddenly applied. Let the weight P
fall from a height h above a Hght beam and produce the dynamic

deflection q; the work performed is then P(h+q). Let T be

the maximum flexural unit-stress produced by the impact and

5 be that due to a static load P which causes the deflection /.

Then the deflections are proportional to the unit-stresses, if

the elastic limit is not exceeded, or q/f= T/S. Also let Q be a

static load which will produce the deflection q; then the deflec-

tions are also proportional to the loads, or q/f=Q/P; accord-

ingly Q/P = T/S. The external work of the load Q is ^Qq and

this is equal to the internal energy stored in the beam when the

deflection q is attained, if all the work is expended in stressing

the beam. Hence ^Qq=P(h+ q), which by the above ratio

reduces to ^Tq=S{h+q). Combining this with q/f=T/S, there

are found,

T=S+S(i+2h/f)i q=f+fii+ 2h/f)i (129)

as the formulas for the dynamic maximum unit-stress and deflec-

tion due to the impact of a single load P. Here 5 is found from
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the flexure formula (41) for any given case, or S=Pcl/aI, and

/ is found from the deflection formula f=Pl^/^EI, where / is

the length of the beam, a and ^ numbers depending on the

arrangement of the ends, I the moment of inertia of the cross-

section, c the distance from the neutral axis to the remotest fiber

of the dangerous section, and E the modulus of elasticity of the

material (Arts. 55 and 63).

When a weight P is moving with the velocity V, it can per-

form in coming to rest the work P . V^/2g, where g is the accelera-

tion of gravity. When the weight moves horizontally and strikes

normally against the side of a beam which has its ends arranged

so as to prevent lateral motion, a lateral dynamic deflection

results. Let h be the height corresponding to v^/2g, then the

external work Ph is to be equated to ^Qq as before. Hence

the equations ^Qq^Ph, in connection with the laws of propor-

tionality, give,

T=S(2h/f)i q=f(2h/f)i=(2hf)i (129)'

for the unit-stress and lateral deflection at the instant when

P comes to rest. This case rarely occurs except in machines

for testing materials by impact.

The above formulas are only valid when the tmit-stress T
is less than the elastic limit of the material. When the load P
is light compared to the weight of the beam, they give results

which are somewhat too large, because a part of the work due

to P is expended in overcoming the inertia of the beam (Art. 131).

It will be noted that these formulas are the same as those found

in Art. 128 for bars, except that the static deflection / appears

instead of the static elongation e.

Prob. 129a. A cast-iron simple beam, 1X1X24 inches, was loaded

with a weight of 25 pounds at the middle and the deflection found to

be 0.0028 inches. It was then struck horizontally by a hammer weigh-

ing 25 pounds which had a vertical fall of 2 inches. Compute the

lateral dynamic deflection.

Prob. 1295. Compute the deflection of the above beam when a

weight of 25 pounds falls vertically upon the middle through a height

of 2 inches. The observed deflection in this case being 0.130 inches,

what explanation may be given of the smaller computed deflection?
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Art. 130. Inertia in Axial Impact

When a moving weight strikes axially upon the free end of

a bar, some of its kinetic energy is expended in overcoming the

inertia of the particles and putting them into motion, this energy

being converted intp heat. The load P falling through the

height h has the kinetic energy Ph when it touches the end of

the bar, but owing to the loss in impact only a part of Ph is effective

in elongating and stressing the bar. Let jj be a number less

than unity, called the ' inertia coefficient ', then -qPh is the energy

which produces the stress Q and the elongation q in the bar.

All the formulas of Art. 128 may hence be applied to heavy

bars when the number -q is known by replacing h by -qh. The

object of this article is to determine the value of j; in terms of P
and the weight W of the bar. The theory . of the impact of

inelastic bodies may be used for this purpose with close approxi-

mation, since the moving weight and the end of the bar are in

close contact during the period of the impact. The velocity

with which stress is propagated through the bar will be sup-

posed to be infinite. The greatest unit-stress Q/a, where a is

the section area, must not exceed the elastic limit of the material.

As soon as the load P strikes the end of the bar, its velocity V
decreases and the end of the bar begins to move. When com-

plete contact is attained, both P and the end of the bar are moving

with a velocity v which is less than'" V, and at this instant any

element dW of the bar is moving with a veloc&y u. Accordingly

the kinetic energy stored in the load P and irithe bar of length

/ and weight W at this instant is expressed by,

K=P . i^/2g+pdW . u^lig

Now u=o for the fixed end and u=v for the free end of the

bar, and for an infinite velocity of stress u is proportional to

the distance y from the fixed end, so that u=v . y/l; also the

element dW is W . dy/l. Introducing these values, the integral

in the above expression is found to be \W . v^/2g or one-third

of the kinetic energy which would obtain if the entire bar were in
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motion with the velocity v. Accordingly,

K={_P+lW)v^/2g or K={i+lW/P)P.iP/2g

is the kinetic energy in the load and bar when the load and the

end of the bar are moving with the velocity v.

Now it is known from Newton's second law of motion, that

the common velocity of two bodies at the instant of complete

contact in the impact is v= V . P/{P-\-Pi), when the body of

weight P moving with the velocity V strikes a free body of weight

Pi which is at rest. For the case in hand, however, one end of

the bar is fixed, so that W cannot replace Pi in this expression.

When the free end of the bar is moving with the velocity v, the

element dW at the distance y from the fixed end is moving with

the velocity u=v .y/l if stress is transmitted instantaneously.

Accordingly, instead of PV= {P-\-Pi)v there must be written,

dW.u=Pv+~ / ydy={P+iW)v

and hence v= V/{i + ^W/P)ia the common velocity of the load

and the end of the bar. Hence, if h is the height V^/2g, the above

expression for K becomes

{x^WIPT '^ ' ^ (i+ii^/P)2

in which ij is the inertia coefficient. When the bar has no weight,

then )j = I and the entire kinetic energy is effective in elongating

and stressing the bar. When the load and bar are of equal

weight, then '?=if, so that ^Ph is effective, while ^Ph is

lost in heat.

For the case of horizontal impact in Fig. I30c, the bar is

brought into tension by the load P moving with the velocity F.

The effective work j?PA is expended in stressing the bar from

o up to Q while the elongation increases from o up to 5, so that

the stored stress energy at the moment of greatest elongation then

is \Q_q; hence ^Qq= T]Ph. Also q/e=Q/P if e is the static

elongation due to P. From these two equations the values of

Q and q for horizontal impact are found to be,

Q=P{27)h/e)i q={2r)he)i
'?= (Th7" ^^^°^
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in which jj is the inertia coefficient and p is the ratio W/P. If

.S is the static unit-stress P/a and T is the dynamic unit-stress

Q/a, then a,lso T=S{2-i)h/e)^. It is seen that the values of Q
and T are less than those given by (128) on account of the energy

lost in overcoming inertia. For instance let T\ be the value

computed from the first equation in (128)", then Tij?* is the

value when the resistance of inertia is taken into account; thus

when W equals P, the d3aiamic imit-stress is o.yjTi, and when
W is equal to 4P it is 0.51 Ti.

Ji
Llj

^-1^ '

Lkj^^

Fig. 130a

P
^

1/

Fig. 130&

I

Fig. 130c

©^^
For the case of vertical impact shown in Fig. 1306 the weight

P faUs through the height h upon the end of the bar. Here the

equations are the same as in the last paragraph except that Pq
is to be added to the second member of the energy equation, since

P falls through the distance q after striking the end of the bar,

whence ^Qq=P(7]h+q). Solving the equations there results,

Q=P+P(i + 2yjh/e)i q=e+{e^+ 2r)he)i (130)'

as the formulas for vertical impact in which the impact coefficient

jj has the value given above. As a numerical example let it be

required to find the dynamic stress produced in a vertical wrought-

iron bar, two square inches in section area and 18 feet long, by a

body weighing 600 pounds and falling through the height of one

foot. Here TF= 10X6X2 = 120 pounds (Art. 17), p=o.2 and

J? =0.882; also e=P//o£ =0.00259 inches; then the formula gives

^=54840 pounds. The stress due to the static load of 600

pounds is 5= 300 poUnds per square inch, but the dynamic stress

due to the same load falling through a height of one foot is 7"=

27 420 pounds per square inch or about 90 times as great.
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When the load P strikes upon a shelf or scale-pan of weight

Wi at the free end of the bar, the loss of kinetic energy is greater

than before, since the inertia of a greater weight must be over-

come. Then at the moment of complete contact Wi has the

kinetic energy Wi . v^/2g and this must be added -to the first

value of K in this article; also the equation of impact becomes

PV=(P+ Wi+^W)v. By the same reasoning as before the

same equations are deduced, except that the inertia coefficient has

the value,

i+Pi+ iP Wi W
/Oi=^- P=-5

' {^+Pl+ hp)^
"^^ P ^ P

For example, take the case of the wrought-iron bar in the last

paragraph and let the load of 600 pounds fall in a scale-pan which

weighs 300 poimds. Here (01=0.5, p= o.2, and tj =0.612; then

Q=4S i°° pounds, and T=22 550 poimds per square inch, so

that the addition of the scale-pan diminishes the dynamic stress

about 18 percent. This is a principle of importance in bridge con-

struction; for example, a heavy floor for a suspension bridge

decreases the dynamic stress which may be brought by the live

load upon the vertical rods that connect the floor to the cable. .

Prob. 130. A weight of 60 pounds impinges upon the end of a hori-

zontal bar of wrought iron which is 2 inches in diameter and 12 feet

long. Find the velocity of the weight which wiU stress the bar up to

its elastic limit..

Art. 131. Inertia in Transverse Impact

When a weight P strikes a beam with the velocity V, it has

the kinetic energy P . V^/2g, and part of this is lost in the impact,

while the remainder causes the beam to deflect the amount g

which is greater than the deflection / due to a static load P. Let

h be the height of fall which will produce the velocity V, and t]

be the inertia coefficient, so that r}Ph is the effective work which

deflects and stresses the bar. Then the formulas of Art. 129

will apply if rjh is substituted for h. The value of / will now be

found for a simple beam in a manner similar to that followed
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for axial impact in the last article, and under the same assump-

tions.

Let the weight P strike the middle of the simple beam with

the velocity F; when complete contact is obtained both P and

the middle of the beam are moving with a velocity v which is

less than F,-and any other point of the beam is moving with a

velocity u. Let W be the weight of the beam, / its length, x

any distance from the left end, and 8W the element which is

moving with the velocity u ; then 8W=W . dx/l. When the middle

point has the velocity v and the deflection yi, the element 8W
has the deflection y and the velocity u=v .yly\. Then the

kinetic energy stored in load and beam at the instant of complete

contact is,

^g J 2g \ J lyi^hg

Now to find the value of the integral, it is assumed that the elastic

curve has the same equation under a dynamic as under a static

load ; from Art. 55 the ordinate y of the elastic curve in terms

of the abscissa x and the maximum deflection y, is found to

be y=yi{2,Px—^)/l^. Then, extending , the integration over

the entire beam,- rf

fw-r/y^-*^'" i.1
3S

and accordingly the kinetic energy whic* is available for deflec-

tion and stress is,

K={P+\lW)v'/2g={i+\W/P)P -^V^i

i
To find the value oi v in terms of V, ^the same reasoning will

be followed as in the last article. Instead of PV = (P+Pi)v

for the impact of P against a free body Pi at rest, there must be

written for the beam,
"

j

dW . u=Pv+
-J-

(2,Px-A^)'^dx^ {P+W)-v

and hence the velocity at the iA|tant of complete contact of beam

and load isv = F/(i + fTF/P). Inserting this in?the above expres-
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sion for the effective work, there is found,

{i+w/pr ^ ^^ ' ' (1+1^)2

in which t) is the inertia coefficient and p is the ratio W/P.

The case of horizontal impact against a beam occurs in some

testing machines, the ends of the bar being prevented from mov-
ing sidewise while a hammer strikes horizontally against the

middle of the beam. Here the discussion is the same as that in

Art. 129 except that h is replaced by T]h, and

T^Si2r,h/f)i q=(27,hf)i (131>

are the formulas for dynamic flexural unit-stress and dynamic

deflection. Here S is the static stress found from the flexure

formula (41) and / is the static deflection foimd from Art. 55

for the load P, and ij is the impact coefficient whose value is-

given above.

For the case of vertical impact where the load P falls through

the height h upon the middle of the beam, the discussion is also>

the same as that in Art. 129, except that h is replaced by 7jh, and

T=S+S{i+ 2Tih/f)i q=f+{f+2rihf)i (131)'

are the formulas for vertical impact, in which 5, /, and rj have

the same signification as before. All the formulas of this article

are only valid when the imit-stress T is less than the elastic limit

of the material.

As a numerical example, let a cast-iron simple beam of 36

inches span and 2X2 inches in section have a load of 50 pounds

at the middle. The flexural imit-stress and the deflection due

to this static load are found from Arts. 48 and 55 to be,

5=338 pounds per square inch, /=0.00243 inches

Now let the ends of the beam be prevented from moving side-

wise when a horizontally moving load of 50 pounds strikes it

at the middle with a velocity due to a fall of 2 inches. Then,

disregarding the inertia of the beam, formulas (129)' give the

dynamic stress and deflection,

r=i3 700 pounds per square inch, 5=0.0986 inches
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Taking the inertia of the beam into account, the weight W is

37.6 pounds, p=-W/P = o.T$2, ti] = o.6^2, and then fonnulas (131)

give,

T= 10 900 pounds per square inch, ^=0.0784 inches

These -values of T are greater than the elastic limit of cast iron

and hence cannot be relied upon as exact. The example shows,

however, that small velocities of impact may produce high dy-

namic stresses in a beam.

When the load P falls into a scale-pan of weight Wi which

is attached to the middle of the simple beam, the loss in impact

is less than when it falls directly upon the beam. For this case

the above reasoning is to be modified by replacing P by P -I-Wi
in the first value of K, and also in the second member of PF =

{P+Pi)v. The inertia coefiScient will then be given by,

' (i+/'i+f^)=^ ^' p ^ P ^ '

For example, taking the cast-iron beam of,the last paragraph,

let the weight of 50 pounds fall vertically upon its middle from

a height of 2 inches, there being no scale-pan; then 7^
= 0.632

and from (131)',

T=ii 240 pounds per square inch, 5=0.0808 inches

Now let there be a scale-pan weighing 20 pounds into which the

load of 50 pounds falls from a height of 2 inches ; here pi = 0.400?

,0 = 0.752, 5^
= 0.505, and then (131)' give,

r=io 090 pounds per square inch, 5=0.0725 inches

which show that the effect of the scale-pan is materially to diminish

the dynamic stress due to impact.

The numbers ^ and f in the inertia coefficient apply only

to a simple beam struck at the middle : they do not apply, how-

ever, to other points than the middle of the span. For a beam

with fixed ends impinged upon at the middle, |f is to be used

instead of il and \ instead of f . For a cantilever beam struck

at the end by a load, 1^ takes the place of J| and | that of f

.

Prob. 131a. Verify the statements in the preceding sentence.
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Prob. 1316. Compute the dynamic deflection for Prob. 1296, tak-

ing into account the inertia of the beam.

Art. 132. Vibrations after Impact

Referring to the case of axial impact shown in Fig. 130c, it

is clear that the velocity of the end of the bar at any instant is a

function of the elongation x. When x equals the final elonga-

tion q, the velocity is zero; the end of the bar then springs back

and increases until x is zero, and then decreases until it becomes

zero when x is equal to —q; the vibration is next performed

in the opposite direction. These vibrations would continue

indefinitely were it not for air resistance and molecular friction,

but owing to such resistances they beconie less and less in ampli-

tude, until finally the bar comes to rest. Neglecting the weight

of the bar in comparison with the load, the following investi-

gation gives the time of one vibration.

Let Vj; be the velocity of the end of the bar when the elonga-

tion X is attained, and let Q^ be the corresponding stress in the

bar. The kinetic energy of the moving weight then equals the

internal work still to be stored in the bar in increasing x to q,

or P . 'v^l2g=\Qq-\Q^. Replacing Q by P . g/e and Q^ by

F . x/e, where e is the static elongation due to P, this equa-

tion becomes,

vi= {q^-x^)gl.e or {dx/dt)^^{q^-x^)g/e

which gives the velocity of the end of the bar for any value of x;

this velocity is zero when x= -\-q and also when x= —q. To
find the time in which this vibration is performed, let t be the

number of seconds counted from the instant when x = q; the

velocity at any other instant is then dx/dt, as already indicated

in the last equation, which may be written.

' / e/g \i fe\i . ..

ri?^2J or i=Marcsm-X
OX \q''—x''J \gl q

and taking the integral between the limits +q and —g there

is found t = n{e/g)^ a,?, the time of one vibration. This is the

time of one vibration of a pendjulum which has the length e.
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This time is the same for all subsequent vibrations notwith-

standing that the amplitude q becomes less and less on account

of the air resistance.

For the case of the vertical bar, the first equation of this article

will be modified by adding P(q—x) to the first member, this

expressing the work still to be performed while the load P falls

through the distance q—x. Then are foimd,

V:?=^-(q^—s(P)—2g(q—x) i=(-] arc sin ^^—^+C
e

"
\gJ q-e

the second being derived from the first by replacing v^ by dx/St

and integrating- as above. By discussing the first equation, it

is found that v^ is a maximum when a: =e as indicated in Fig. 130&,

and that v^ is zero when x = q. Hence, counting the time from

the instant when x = e, the time elapsed when x=q is ^^(e/^)*,

which is that of one-half a vibration. In the backward vibration

the end of the bar moves from x=qtox = em. the same time;

the first equation shows, however, that v==o when x= —q+2e,

so that the end of the bar moves upward and the tim,e elapsed

"between x = q and x=—q+2e is 7c{e/g)^, which is the time of

one vibration. The end of the bar hence oscillates back and

forth about the point for which x = e, that is, about the point

where it finally comes to rest; while the amplitude q—eoi the

vibrations grows less and less, the time of each vibration remains

the same, namely, that of a simple pendulum having a

e equal to the elongation due to the static load P.

The above conclusion regarding the time of vibration^will

be shghtly modified when the inertia of the bar is taken into

account. Let W be the weight of the bar and Wi that of the scale-

pan at its end. Then when P and W\ have the velocity v^ the

kinetic energy of the moving particles is {P+ W\+^W)v^/2g;

for the vertical bar P(q—x) is to be added to this to give the total

work still to be performed. This sum is to be equated to the stress

energy iQq—-^Q:^ which is to be stored in the bar in increasing

the elongation from x to q. Stating this equation, there is found,
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and by the same method as before there results,

'='(7)' "' '-'©' "^«

as the time of one vibration, in which e' is the static elongation

due to P +Wi+^W. This formula also applies to the horizontal

bar. As a numerical example, let the data of Problem 130 be

considered. Here P = 6o poimds, 1^ = 125.7 pounds, l^i=o,

and the static elongation due to P+^W is £'=0.000187 inch.

Then, taking g as 32.2 X 12 inches per second per second, the time

of one vibration is <= 0.002 2 seconds, and about 460 oscillations

would be performed in one second if there were no frictional

resistances.

The vibrations of a beam after the impact of a load are in

all respects similar to those of a bar. By investigations exactly

Hke those for the bar, it may be shown that the time of one vibra-

tion for a simple beam struck at the middle is,

'(f)

*
o ,Wi zj W
^=,+ !-L+il^ (132)'

where /is the static deflection due to P; here /?/ is the static de-

flection due to P+Wi+iiW. When the load remains on the

beam after impact, the vibrations occur about the position which

it finally assumes imder the static load; when it does not remain

on the beam, the vibrations occur about the position that it had

before the impact. Fig. 133 shows the vibrations of a railroad

rail after impact.

The above formulas do not apply to the incomplete semi-

vibration which occurs during the impact while the end of the

bar is descending through the distance e or the middle of the

beam through the distance /. The time of all subsequent vibra-

tions is the same whatever be their amplitude and is equal to that

of a simple pendulum which has the length /?e for the bar or pf

for the beam. The shorter this length the less is the time t and

the more rapid are the vibrations.

Prob. 132. When a load falls upon a beam show that the amplitude

of the first complete vibration is a little less than 2{f^+2rjhf)i.
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Art. 133. Experiments on Elastic Impact

Numerous experiments have been made to test the formulas

for elastic impact derived in the preceding articles, and a dis-

cussion of some of them. will now be given. These formulas

are not exact, because it has been supposed in their deduction

that the velocity of transmission of stress is infinite, and that no

loss of energy occurs except in impact. The assumption regard-

ing velocity of stress does not lead to any appreciable error, but

that regarding loss of energy may do so in cases where the falling

body is deformed so that it absorbs energy or where a portion of

the energy is expended in deforming the supports of the bar or

beam.

Simple experiments may be made by the student, using a

common spiral spring instead of a bar, so that the elongations

may be easily measured. For example, a spiral spring about

32 inches long and weighing 0.6 ounces was found to elongate

0.390 inches imder a static load of 10 ounces. When loaded with

8 oimces and the end depressed by the hand and then released,

there were counted 304 vibrations in 100 seconds, when loaded

with 14 oimces there occurred 230 vibrations in 100 seconds.

Here the actual times of one vibration were 0.329 and 0.435

second, while formula (132) gives 0.321 and 0.428 seconds, so

that the agreement of experience and theory is very fair.

The simplest case of impact on beams is that of a single

«udden load which was discussed in Art. 127. Kirkaldy made
experiments, about x86o, to test the theoretic law that the

deflection under such a load is double that due to an equal

static load. A load was attached to a ring placed around the

middle of the beam and the ring supported so that its lower

surface just touched the upper surface of the beam; the sup-

port of the ring was then suddenly withdrawn so that the load

acted with its full intensity during the entire period of the deflec-

tion, which was registered upon a vertical sheet of paper by a

pencil screwed to the side of the beam. ^ Before applying the

loads in this sudden manner, the deflections due to gradually
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applied loads were measured. The beams were of cast iron and

laid on supports 9 feet apart. The results here shown are the

mean oi two or three tests upon different beams. It will be

found that for each size of beam the first load gives a unit-stress

less than the elastic limit, while the second gives a greater value.

Size of Beam



Swinging P= 25
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9=0.69 inches for the dynamic deflection, which is not a good

agreement with the observed value. Applying formula (132) there

results <= 0.146 for the time of one

vibration, and hence the theoretic time

for 240 observations is about 35
seconds. While the numerical results

derived from theory do not agree very

well with the observations, this experi-

ment is a very instructive one, and

the figure shows how a beam vibrates

back and forth about the position

that it occupies after coming to rest.

Prob. 133. Explain all the lines and

notes on the left-hand part of Fig. 133.

See Raihoad Gazette, May 31, 1905.

2 Art. 134. Pressure during Impact

When a weight P falls from a

height h upon the end of a vertical

bar, a pressure is produced which is

equal at any instant to the stress then

existing in the bar. For the case of

elastic elongation discussed in Art.

130, the maximum stress is Q, which

occurs when the greatest elongation q

is attained. The stress Qx which

occurs for any elongation x is equal

to P . x/e, where e is the static elon-

gation due to P. Thus the pressure

increases directly with x, becomes P
when x=e, and reaches its maximum
value Q when the greatest elongation

q is reached. Similarly, Art. 131 shows that for a beam imder

elastic impact, the pressure on the beam increases directly as the

deflection y, becomes equal to P when y=f, and reaches its

maximum value when the maximum deflection q is attained.
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The actual forces acting between the falling load and the end

of the bar differ somewhat from the stress in the bar, because

there exists a pressure which overcomes inertia during the first

part of the fall. The exact determination of the actual pressure

fcfr the case of elastic impact is a problem of so much complexity

that it will not be imdertaken here, while its determination is

impossible by theory for cases where the elastic limit of the mate-

rial is exceeded. Froni the point of view of the engineer, the

pressures that cause motion of the bar or beam are of little im-

portance compared with those that cause deformation of the

material.

The following niethod is sometimes used 'for estimating the

mean pressure on a beam during its deflection tmder impact.

Let R be this mean or average pressure which is exerted through

the deflection q. Then Rq is the work performed by it, while

that done by the falling load is PQi+q). Placing these equal

there results R=P{z + h/q) for the mean pressure. While this

expression is correct for both elastic and non-elastic deflections, it

must be borne in mind that it does not give the mean compressive

stress on the upper surface of the beam where the impact occurs,

but always a greater value, because some of the pressure is ex-

erted in overcoming inertia.

To illustrate, take the case of the railroad rail discussed at the

end of the last article, where a weight of loo pounds fell from a

height of 12 inches and caused an elastic deflection of 0.91 inches.

Then i?= looX 12.91/0.91 = i 420 pounds for the average pressure

during the dynamic deflection. The static load Q which will

produce the same deflection is Q = 100X0.91/0.12 = 760 pounds,

so that the average pressure which was effective in stressing the

beam and causing the deflection was 380 pounds. Undoubtedly,

the actual average pressure was about i 420 poimds, but more

than two-thirds of this was expended in overcoming the inertia

of the heavy beam.

In all cases of elastic impact, the mean or average stress is

one-half of the maximum,- because the stress increases uniformly

with the deflection. This is not true when the elastic limit of
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the material is exceeded, and in general the mean stress is less

than one-half of the maximum. The same probably holds for

the total pressure that is exerted both to overcome inertia and

to cause stress. The maximum unit-pressure that acts between

the surfaces of contact will depend^ of course, upon the area of

contact and upon the manner in which the total pressure is dis- -

tributed over that area.

Prob. 134a. A vertical bar weighing 27 pounds receives a stress of

196 pounds when a load of 100 pounds acts axially upon it. Through

what height must a load of 50 pounds drop in order to produce the

same stress?

Prob. 1346. A ram weighing 2 000 pounds falls from a height of 20

feet upon a railroad rail laid on supports 6 feet apart, this being one

method of testing rails at the mill. Compute the average pressure

when the ram deflects a heavy rail 2^ inches; also when it deflects a

lighter rail 5 inches.

Art. 135. Impact Causing Rupture

The cases of impact thus far considered have been those where

the greatest imit-stress does not exceed the elastic limit of the

material. It is, however, easy to cause the rupture of a bar or

beam by allowing a heavy load to drop upon it from a sufficient

height. For such cases theory furnishes no formulas and experi-

ment is the only source of information. Many tests have been

made to ascertain the phenomena of rupture under impact, and

the general conclusions derived will now be stated.

In 1807 Thomas Young announced the fundamental ideas of

the resistance of materials under impact. "The action which

resists pressure," he said, "is called strength, and that which

resists impulse may properly be called resilience." He stated

that the resilience of a body is proportional to its strength and

extension jointly, and that it is measured by the height through

which a given weight must fall to cause rupture. The resili-

ence,of beams of the same kind he made proportional to their

volumes, as also the resilience of shafts, whether solid or hollow.
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At that time the elastic limit of materials was only vaguely recog-

nized, and Hooke's law of proportionality of deformation to stress

was often applied to all the phenomena preceding rupture. Young's

statements are valid in a general way, but it is now known that there

are two divisions of the subject of impact: first, that where the

elastic limit is not exceeded and where the term resilience is properly

applicable, and second, that where the elastic limit is exceeded

and rupture finally occurs.

In 1818 experiments were made by Tredgold on wooden

beams subject to the impact of a falling ball, and he concluded

that the work required to produce rupture was not proportional

to the volume of the bar. Hodgkinson in 1835 experimented on

cast-iron beams and found that the deflections seemed to be

proportional to the velocities of the falling weight. In 1849

were published the results of an extensive series of experiments

made by a British commission, and here the influence of inertia

in diminishing the deflection of a beam under impact was fully

recognized. Kirkaldy in 1862 made experiments on axial impact

by sudden loads, and foimd that some bars were broken under

loads less than those required when slowly applied. The impact

hammer or ram, introduced by Sandberg and Styffe in 1868 for

testing railroad rails, has proved valuable for comparative pur-

poses since the information obtained is similar to that derived

from the cold-bend test. Maitland, in 1887, showed by many
experiments on tensile specimens subject to many blows of a faUing

ram, that the ultimate elongation was much greater than in static

tests ; the use of many blows to cause rupture introduces, how-

ever, complications, and it has been found that the best plan to

obtain valid results is to use a load and fall which is just suffi-

cient to break the specimen at one blow.

When a specimen is broken imder tensile impact, the work

expended may' be ascertained by measuring the area of a stress

diagram which is autographically drawn by the machines and

which also shows the ultimate elongation. Experiments of this

kind made by Hatt in 1904 on various kinds of steel have shown

that the work required to rupture a bar by impact is usually
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greater than that in common static tests where the load is gradu-

ally appHed. From the mean of about 170 tests, Hatt found

that the average work required for rupture by impact was 30 per-

cent greater than in static tests, and that the ultimate elonga-

tion under rupture was 20 percent greater. The fracture was

similar in both impact and static tests, but in the former there

were often observed two or more places of marked diminished

section, whereas only one occurred in the latter. For roimd

bars of soft steel there appeared to be little difference in ulti-

mate elongation and work whether the bars were broken in ten

minutes by the common method or in one one-hundredth of a

second by impact.

When a body is ruptured by impact, it is iniportant that the

apparatus should be so arranged that all the work of the falling

ram may be expended on the specimen, and not be absorbed by

other parts of the apparatus. If the weight falls upon a shelf

or pan connected to the bar or beam, this should be made heavy

so that work may not be expended in deforming it. When the

ends of. a tensile specimen are larger than the main part, they

should be made very large so as not to absorb energy, and the

supports of a beam should be made heavy for a similar reason.

Impact tests are of much value in determining the quaUty of

materials, and they are widely used for raihoad rails, car and

locomotive ades, and other steel pieces which are subject to

shocks. The impact tests introduced by Keep for cast iron

undoubtedly give valuable inforination regarding its behavior

under shocks. In general it is probable that impact tests show

lack of homogeneity of the material better than static tests.

Autographic records taken during a tensile impact test give

valuable information regarding the elastic limit and ultimate

strength of the mateirial. The elastic limit is often found to be

higher than under static tests, while the ultimate strength is

usually a Httle lower, the difference between these unit-stresses

being much less than in the usual method of testing. For timber

Hatt has found that the elastic limit is nearly doubled under

impact.
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The formulas for dynamic stress and elongation deduced -in

the preceding articles do not apply to cases where the elastic

limit is exceeded, and hence all attempts to verify these formulas

by experiments on the rupture of bars and beams are fallacious.

Hodgkinson broke cast-iron beams under both sudden and gradual

loads, and found that the ratio of the latter to the former was

always less than 2, which should be the true ratio if the elastic

law were applicable. The following, for example, are three

of his results for cast-iron beams with a span of 9 feet

:

Size of Beam
Inches
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quickly, and hence it is customary to multiply the computed

siatic stresses by a number called the " coefl&cient of impact

"

in order to obtain the increased stress due to suddenness of

apphcation. Thus, let S be any computed stress due to the

given live load, this being either a imit-stress or the total stress

in a member; then tS is the stress due to the quickness with

which the load is applied, and t is the coefficient of impact,

so that the total stress due to the Hve load is S+ tS or (i + t)S.

This use of the word impact does not agree with that of the

preceding articles, but it is customary in bridge hterature;

really this coefficient of impact includes the effect of lateral and

vertical oscillations due to irregularities of the track as well as

the effect of quickness of apphcation of the live load.

Various methods are in use for assigning values of the coeffi-

cient a, but in all of them no attention is paid to the time in

which the stress is generated, and in fact they rest.upon no theo-

retical basis except the law that a suddenly appKed load pro-

duces double the stress of a static one. Some engineers regard «

as unity for all cases of hve load, and hence double the stress

due to the live load in designing the section areas of the mem-

bers. Many others take z as less than unity, using higher values

for Ught bridges than for heavy ones, while some make ^ depend

upon the length of span and take it higher for short spans than

for long ones. Empirical formulas for i are given in Roofs

and Bridges, Part I (New York, 1905).

In this important matter experience is in advance of theory

since no formula has yet been established for the case of a load P
appUed to a- bar in a given time. When slowly apphed P pro-

duces a unit-stress S, when suddeply applied it produces a imit-

stress 25, if the elastic limit is not exceeded (Art. 127) ; when

appUed in a given time t, the imit-stress should lie between 5
and 25. Hence there must exist a certain function <j){i) so that

the dynamic unit-stress is given by T=(f>(t)S; when t is large,

T must equal 5; when t is zero, T will be 25. Many empirical

expressions can be derived which satisfy these limiting condi-

tions, but the determination of the theoretic form of (j>{t) is greatly



Akt. 130 Stresses due to Live Loads 351

to be desired, because a knowledge of it would be of much

practical benefit in promoting the correct .design of members of

bridge trusses.

The discussion published in Zinmiermann, in 1896, regarding

the increase in stress and deflection due to the velocity of a live

load when crossing a simple beam, is probably the nearest approach

to the solution of this important problem, but the formulas deduced

are too complicated to be given here. Let v be the velocity

of a single load P which rolls over the beam of span I and depth d,

and let / be the static deflection due to P- When v is zero, the

dynamic unit-stress is 5; es v increases the dynamic unit-stress

increases, but it can never become as great as 25; when v^ has

the value gP/8f, where g is the acceleration of gravity, the load P
reaches the middle of the span in the same time that gravity

causes a body to fall freely through the distance /, then also

T=S; .when v has a greater value, then T is less than S; when

'v^=gfj where r is the radius of the earth, then T=o. The impor-

tant cases "hence occur when v is less than {gl^/^f)^- From Zim-

merman's investigation, there may be written,

r=5(i -2/?)/(i -3^) - p=&Sv2/zEdg

which applies only when /9 is less than o.i, but this covers most

cases of usual speeds of live loads on beams. For example, take

a stringer in a bridge floor which is 2 feet deep; the ratio S/E
is about 4000, and hence ;3= 0.082 for a velocity of 60 miles

per hour or 88 feet per second; then 7"= 1. 11 so that the dynamic

stress is II percent greater than the static stress.

While the above theoretic formula gives much lower values

of T than those used in bridge practice, it may be noted that

it refers only to the middle of the span of the beam, and

that for other points the theoretic percentage of increase may
be much greater. For the quarter points of a short span under

speeds varying from 80 to 100 miles per hour, the investigations

of Zimmerman indicate that the percentage may be as high

as 65 percent. The empirical percentages used in bridge prac-

tice range from 100 to 50 percent, so that it is plain that these
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are not too large, particularly when it is considered that they

include the -effect of the shocks due to the hammer of wheels

which are not properly balanced.

Prob. 136a. Deduce the condition that the load P shall reach the

middle of the span in the same time that a body falls freely by gravity

through the deflection /.

Prob. 1366. Consult Zimmermann's Schwingungen eines Tragers

mit bewegter Last (Leipzig, 1896), and show that the above formula

agrees with the one given by him on page 39.

Art. 137. Fatigue of Materials

The ultimate strength Su is usually understood to be that

steady imit-stress whicli causes rupture of a bar at one appli-

cation. Experience and experiments, however, teach that rup-

ture may be caused by a unit-stress somewhat less than Su when

it is applied a sufficient number of times to a bar. The experi-

ments made by Wohler from 1859 to 1870 were the- first that

indicated the laws which govern the rupture of metals under

repeated applications of stress. For instance, he found that

the rupture of a bar of wrought, iron by tension was caused in

the following different ways :

by 800 applications of 52 800 pounds per square inch

by 107 000 applications of 48 400 pounds per square inch

by 450 000 applications of 39 000 pounds per square inch

by 10 140 000 applications of 35 000 pounds per square inch

The range of stress in each of these applications was from o to

the designated number of pounds per square inch. Here it is

seen that the breaking unit-stress decreases as the number of ap-

plications increase. In other experiments where the initial stress

was not o, but a permanent value S, the same law was seen to

hold good. It was further observed that a bar could be strained

from o up to a stress near its elastic limit an enormous number

of times without rupture, and it was also found that a bar could

be ruptured by a stress less than its elastic limit under a large

number of repetitions of stress which alternated from tension

to compression and bacji again.
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Wohler's experiments were made on repeated tensile stresses,

i-epeated flexural stresses, and on flexural stresses alternating

from tension to compression,' these being produced by a machine

which brought repeated loads upon the specimen for long periods

of time, as high as forty millions of repetitions being made in

some cases. Similar experiments were later made by Bauschinger

and others on steel, and from the recorded results the following

laws may be stated

:

1. The rupture of a bar may be caused by repeated appli-

cations of a unit-rstress less than the ultimate strength of the

material.

2. The greater the range of stress, the less is the unit-stress

required to produce rupture after an enormous number of

applications.

3. When the unit-stress in a bar varies from o up to the

elastic limit, an enormous number of applications is required

to cause rupture.

4. A range of stress from tension into compression and

back again, produces rupture with a less number of applica-

tions than the same range in stress of one kind only.

5. When the range of stress in tension is equal to that in

cbmpression, the unit-stress that produces rupture after an

enormous number of applications is a httle greater than one-

half the elastic limit.

The term ' enormous nimiber ' means about 40 millions,

that being roughly the number used by Wohler to cause rupture

under the conditions stated. For all cases of repeated stress in

bridges, this great number will not be exceeded during the natu-

ral life of the structure; for locomotive axles and moving parts

of machines, however, a larger nimiber of repetitions of stress

may occur.

The word 'fatigue' means the loss of molecular strength

under stresses often repeated. When a bar is stressed above the

elastic limit its temperature increases due to internal molecular

friction (Art. 147) and it is known that the elastic properties

of the material are injured. Hence in a general way it is easy

to explain why fatigue occurs under repeated stressses that exceed
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the elastic limit. An examination of fractures of bars after an

enormous number of repetitions shows certain small surfaces

where sliding or shearing has occurred; these are called 'micro-

flaws,' although they can often be seen without the use of a micro-

scope. In iron and steel these flaws begin along the surfaces of

the ferrite crystals and later are extended to cause cracks along

the cleavage planes of the crystals.

When the elastic limit is not exceeded it is not so easy to under-

stand why fatigue should occur under repeated stresses. How-

ever, physical and thermodynamic discussions have proved that

small changes in temperature occur when a bar of metal is stressed

within the elastic limit, it becoming cooler under tension and

warmer under compression. The measurements of these changes

made by Turner, in 1902, have shown that these changes in tem-

peratures continue at a imiform rate up to about three-fifths

of the elastic limit, and that then a marked change occurs, the

bar under tension then beginning to grow warmer while the

temperature of the bar under compression increases at a more

rapid rate. It thus appears that for stresses higher than about

three-fifths of the elastic limit, at least, energy is converted into

heat imder repeated applications; probably this occurs also at

lower stresses when repeated stresses range from tension into

compression in a bar, or when a beam is subject to alternating

flexure. The valuable experiments of Turner hence throw light

upon the reason why fatigue occurs under alternating stresses,

and it is likely that further investigations in this direction may
lead to other important conclusions. The discussions in Arts.

146-147 indicate that internal friction occurs under stresses that

do not exceed the elastic limit, and this point of view is also one

which will assist future investigations.
I

In Art. 7 it was recognized that allowable unit-stresses should

be less for bars subject to varying loads than for those carrying

steady loads only. It has indeed long been the practice of de-

signers to grade the allowable working stresses for bars according

to the range of stress to which they might be liable to be sub-

jected. The above laws of fatigue furnish a method of doing
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this which has been used by some engineers, and formulas for

that purpose will be deduced in the next article.

Prob. 137a. How many years wiU probably be required for a loco-

motive axle to receive forty million repetitions of flexural stresses ?

Prob. 1376. Consult Turner's paper in Transactions American

Society of Civil Engineers, 1902, Vol. 48, and examine the- thermal

stress curves derived from his experiments.

Art. 138. Strength under Fatigue.

Consider a bar in which the imit-stress-varies from S' to S,

the latter being the greater numerically. Both S' and S may
be tension or both may be compression, or one may be tension

and the other compression; in the last case the sign of S' is to

be taken as minus. Consider the stress to be repeated an enor-

mous number of times from S' to S, and rupture to then occur

under the greater imit-stress 5, which may be called the strength

of the material under fatigue. By the second law above stated

5 is some function of S — S'; this is equivalent to saying that

5 is a function of S(i— S'/S), or more simply a function of S'/S.

Now if P' and P be the total stresses on the bar, the ratio S'/S

equals P'/P, and hence the unit-stress 5 which causes rupture

after an enormous number of repetitions is a function of P'/P.

A formula for 5 when the limiting stresses P' and P are both

tension or both compression, so that P'/P is always positive,

was deduced by Launhardt in 1873. Let the values of this ratio

be taken as abscissas ranging from o to i, while those of S are

ordinates, as in Fig. 138ffl. Let the function of P'/P be supposed

to represent a straight line which has the equation S=Ci + C2(P'/P)

in which Ci and C2 are constants to be tietermined. Let 5«
be the ultimate strength of the material and Se the elastic limit.

Now if P'/P is tmity, then SisS„ and hence Ci-1-C2=5„; also,

from the third law of the last article, 5 is Sg when P'/P is zero.

These two conditions give Ci =5^ and C2=S„—Se, and the equa-

tion of the straight line becomes,

5=5,+ (5„-5,)P'/P or S=S,[i + ^-^i^P'/p\
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which is Launhardt's formula for the unit-stress 5 that ruptures

the bar after an enormous number of repetitions of a load that

ranges from P' to P. For structural steel, using the mean values

of 5„ and Se in Tables 2 and 3, this becomes 5 = 35 000(1 +\P'/P)
;

for wrought iron it becomes 5 = 25 ooo(i+P'/P). For example,

let a bai; of structural steel range in tension from 80 000 to 160 000

pounds; then P'/P is 0.5, and 5=47 500 pounds per square

inch is the unit-stress that will cause rupture after an enormous

number of repetitions.

A formula for 5 when the bar ranges in stress from P' to P,

one being tension and the other compression, and P being the

greater numerically, was deduced by Weyrauch in 1877. Here

P'/P is always negative, and the law connecting it with 5 is

again assumed to be S=Ci+C2(P'/P); Fig. 138& represents this

case. Let S^ be the unit-stress at the elastic limit and Sa the

unit-stress which, under the fifth law of the last article, causes

rupture when the load alternates from a certain value in tension

to the same value in compression. By the third law, if P'/P is

zero, then S is Sg and hence Ci =5^. By the fifth law, if P'/P is

— I, then S is Sa and hence C2=Se—Sa- The equation of the

straight line therefore becomes,

S=Se+{Se-Sa)P7P or S=S,(i+^^^P'/f\

which is Weyrauch's formula for the unit-stress which ruptures

a bar after an enormous number of repetitions of a load alter-

nating from tension to compression and back again. Sg is

usually taken as §5^ in the absence of , knowledge regarding its

exact value. For structural steel the formula becomes 5 =

35 000 (i+^P'/P), in which P'/P is always negative. Thus, if

P' is 80 000 pounds compression and P is 160 000 pounds ten-

sion, then P'/P = —0.^1, and 5 = 26200 pounds per square inch

is the unit-stress that will cause rupture.

Another formula, deduced by the author in 1884, gives values

of 5 for both positive and negative values of P'/P, and thus

includes the two cases discussed above. The law of variation

of S is assumed to be represented by a curve joining the tops of
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the three ordinates S„, Sg, Sa, in Fig. 138c. The simplest curve

is a parabola given by the equation S = Ci +C2(P'/P)+C3(P'/P)K

To determine the three constants, consider, first that S becomes

S„ when P'/P=+i, and hence Ci+C2+C3=S„; secondly,

that S becomes Sg when P'/P=o, and hence Ci=Se; thirdly,

that S becomes 5^ when P'/P = -i, and hence Ci —C2+ C3 =Sa.

From these conditions, the values of Ci, Cz, C3 are found and

the equation of the parabola becomes,

S=S,+iiS„-S,)y +K5«+5a-2S,) (^y (138)

which is a formula for the rupturing unit-stress 5 when the total

stress ranges an enormous number of times from P' to P- When
P' and P are both tension or both compression, the ratio P'/P

is positive; when one is tension and the other compression, P'/P

is negative. It is seen that (138) gives values of 5 a little smaller

than those found from the straight-line formulas.

Fig. 138a Fig. 138c

For structural steel, where 5'„ = 6oooo, 5^ = 35000, and

5o = i7 SCO poimds per square inch, the formula (138) reduces to,

5= 35 ooo[i -f- 0.61 (P'/P) -h o. 1 1 (P'/i')2]

For a bar of such steel in which the stress ranges from 180 000

pounds tension under dead load to 540 000 pounds tension under

hve load, the value oi P'/P is -\-^, and the formula gives S =

42 500 pounds per square inch. If the stress ranges from

180000 pounds compression to 540000 pounds tension, then

P'/P is —\, and 5 = 28300 pounds per square inch.

When the above formulas are used for designing, a factor

of safety is applied, the computed values of S being divided

by this factor, and thus the allowable unit-stress is obtained.

About 1880 the formulas of Launhardt and Weyrauch were
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extensively used in determining the allowable unit-stresses for

designing members of bridge trusses, but their use has gradu-

ally been replaced in the United States of America by other

methods. Since no unit-stress used for a bridge member can

be allowed to be greater than about one-half of the elastic limit

of the material, it is claimed by many engineers that the ideas

of fatigue cannot enter in making the design. Nevertheless

this question must not be ignored, especially for locomotive>-

axles and tires and for parts of machines subject to shocks. Tests

of materials under repeated stresses, or endurance tests as they

are sometimes called, are still in progress at the Watertown

Arsenal, at the testing laboratory of the Pennsylvania Railroad,

and in other places; when sufficient records have been accumu-

lated they will prove of great value in further investigations into

this subject.

Prob. 138a. A short bar of wrought iron is subject to repeated

stresses ranging from i6 ooo pounds compression to 80 000 pounds

tension. What should be the area of its cross-section for a factor

of safety of 5 ?

Prob. 138b. Consult Tests of Metals, published annually by the

ordnance office of the U. S. Army, and describe some of the endurance

tests on rotating shafts made by Howard.
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Chapter XV

TRUE INTERNAL STRESSES

Art. 139. Principles and Laws

.In Art. 13 it was explained that a bar under tension suffers

a contraction in its section area, each lateral dimension having

a unit-contraction proportional to the longitudinal unit-elonga-

tions, when the elastic limit of the material is not exceeded.

Let 5 be the tensile imit-stress, e the unit-elongation, X the fac-

tor of lateral contraction, and E the modulus of elasticity of the

material; the lateral unit-shortening' is then Xe. Since S = £E

is the relation between 5 and s (Art. 9), it may be considered

that the lateral unit-shortening Xe corresponds to a tmit-stress T
which has such a value that T=XeE, where 2" is a compressive

imit-stress which would produce the imit-shortening Xe in the

absence of any axial stress. Thus, 7^= AS is called a true internal

stress which acts as a compression at right angles to the axis

of the bar.

The mean value of X for wrought iron and steel is about ^.

Accordingly, a steel bar under the tensile unit-stress 5 suffers

a true internal compressive unit-stress of ^5 in all directions at

right angles to its length; similarly, a steel bar under the com-

pressive unit-stress S suffers a true internal tensile unit-stress

of \S in all directions at right angles to its lemgth. For instance,

let a steel bar 2X3 inches in section and loMiches long be sub-

ject to a tension of 90 000 pounds ; the axial tensile imit-stress S
is 15 000 pounds per square inch and the lateral internal com-

pressive imit-stress is 5 000 pounds per square inch. The same

lateral deformation of the bar, when no axial load is acting, might

be produced by two compressive loads acting at right angles to

each other, one uniformly distributed over the side of 20 square

inches area and the other over the side of 30 square inches area

;

it may be shown from the following discussion that these two

compressive loads are 150 000 and 225 000 pounds.
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When applied tensile forces act upon a body in three directions,

each force being at right angles to the plane of the other two,

there is an elongation due to each force in its own direction and

a shortening in directions normal to it. It is a reasonable assump-

tion that each force produces its deformations independently of

the other two, and this is also justified by experience and experi-

ment. The true stress in any direction depends upon the actual

deformation in its direction. The letter 5 will denote the apparent

unit-stress as computed by the methods of the preceding chapters,

while T will denote the true unit-stress corresponding to the

actual deformation. The injury done to a body does not depend

upon the actual stress or pressure but upon the actual deforma-

tions produced, and the true stresses are those corresponding

to these deformations.

Let a homogeneous parallelepiped be subject to tensile forces

acting normally upon its six faces, those upon opposite faces being

g^ equal. Let the edges of the parallel-

epiped be designated by oi, 02, 03,

as in Fig. 139. Let Si be the normal

unit-stress upon the two faces per-

pendicular to the edge 01, and ^2 and

53 those upon the faces normal to 02

and 03 ; thus the directions of ^i, 52,

Ss are parallel to 01, 02, 03, respectively. Then, supposing that

the modulus of elasticity E and the factor of lateral contraction X

are the same in .all directions, the true unit-elongations si, £2, sa

in the three directions are found from the expressions,

Now Esi may be designated by Ti, this being the unit-stress which

would produce the elongation si in the direction 01 if ^2 and ^3

were not acting; also the unit-stresses Ee^ and ££3 may be desig-

nated by T2 and Tz. Hence it follows that

Ti^Si-XS2-XSz T2=S2-XS3-lSi T3=Ss-lSi-XS2 (139)

are the true stresses acting in the three rectangular directions.

If any stress 5 is compression, it is to be taken as negative in the
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formulas, and then the true stresses are tensile or compressive

according as their numerical values are positive or negative.

For example, let a cube be stressed upon all sides by the

apparent unit-stresses S; then the true internal unit-stress T
is S(i—2X) ; for steel A=^, and 7"= ^5, and thus the linear defor-

mation is only one-third of that due to a unit-stress 5 applied

upon two opposite faces. Again, if a bar has a tension Si in

the direction of its length, and no stresses upon its sides, then

Ti =Si, while T2 = Tz= — A5i.

As a simple example, let a steel bar 2 feet long and 3X2
inches in section area be subject to a tension of 60 000 pounds

in the direction of its length and to a compression of 432 000

povmds upon the two opposite flat sides. Here 5i =60 000/6

= 10 coo poimds per square inch, ^2= —432 000/72 = — 6000

pounds per square inch, and 53=0. Then from (139), taking

X as \, the true internal stresses are Ti = -f-12 000, J'2 = — 9 330,

Ts = —i 330 pounds per square inch, and it is thus seen that the

true tensile, unit-stress is 20 percent greater than the apparent,

while the true compressive imit-stress is more than 50 percent

greater than the apparent.

The term 'apparent stresses' will be used to indicate the

stresses computed by the methods of the previous chapters where

no lateral deformation has been taken into accoimt. In Chapter

XI such stresses have been combined in order to obtain the

resultant maximum tension, compression, and shear, but it will

now be shown that the true internal stresses corresponding to

the actual deformations of the material are often much greater

than the apparent ones. It is very important to consider these

true stresses in many problems of investigation and design which

occur in engineering practice.

Prob. 139. A common brick, 2^X4X8^ inches in size, is subject

to a compression of 3 200 pounds upon its top and bottom faces, 500

pounds upon its sides, and 60 pounds upon its ends. Taking X as

0.2, compute the true internal stresses in the three directions.
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Art. 140. Shear Due to Normal Stress

The term 'normal stress' is used for the tension or compression

that acts normally to a plane in the interior of a body. The

rectangular bar in Fig. 140a may be said to be acted upon by

normal loads, and planes perpendicular to these loads are said to

be subject to normal imit-stress. Other normal stresses also act

upon other planes within the bar, but it will be shown that the

normal imit-stresses upon such planes are less than upon planes

perpendicular to the directions of Pi and P2. Let Sy, be the normal

unit-stress on a plane perpendicular to Pi, and 52 that on a plane

perpendicular to P2; then the true unit-stresses Ti and T2, as

also the true imit-stress P3 at right angles to these, are readily

found by the methods of Art. 139. There also exist shearing

stresses in the bar which will now be considered. Let any plane

be drawn cutting it obliquely and let the given forces be resolved

into components parallel to this plane; the sum of these com-

ponents forms a shear acting along the plane, and the intensity

of the shear will vary with the inclination of the plane. It is

required to find the maximum shearing unit-stresses.

Let / be the length, b be the breadth, and d the depth of the

rectangular bar in Fig. 140a, subject to the two normal forces

Pi and P2, while there is no force acting upon the side whose

area is Id. The normal unit-stresses then are Si=Pi/bd, 82 =

P2/W, 53=0. Let Fig. 1406 represent any elementary parallelo-

piped in the interior of the bar, having the length dx, depth Sy,

and width unity; then Sidy is the normal stress upon its ends,

and S2SX is the normal stress upon the upper and lower sides.

Let 6 be the angle which the diagonal dz makes with dx, and

let S' be the shearing unit-stress that acts along the diagonal.

The total shearing stress along the diagonal then is S'dz and this

is equal to the algebraic sum of the components of the normal

stresses in that direction. Accordingly, noting that dy/dz =

sin(9 and dx/dz=cosd, there result,

S'dz=Sidy.cosd-S23xsmd or S'=(Si-S2)sm6 cosd

and the second equation gives the shearing unit-stress along
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any plane which makes the angle with the direction of 5i.

The maximilm value of S' occurs for 5 = +45° 01 d 45°, and

for both cases may be written S' = ±^{81—82), that is, the maxi-

mum shearing unit-stress occurs on two planes which bisect the

directions of Si and 52, and its numerical value is equal to one-

half of their difference. The broken lines in Fig. 140a show

these two sets of planes.

SiSj
|gaSe

T

Sihy

S^ 8x

Fig. 1406

The same conclusion follows when true stresses are con-

sidered. If Ti and T2 are the true unit-stresses due to the

apparent unit-stresses- 5i and ^2, then the true maximum shear-

ing unit-stresses are equal to one-half their difference, and they

act in planes which bisect the directions of Ti and Tz- Accord-

ingly, the formulas,

S'=iiSi-S2) and T'=i{Ti-T2) (140)

give the maximum internal shearing unit-stresses. These may
be either positive or negative, but it is best to consider internal

shear as a signless quantity, since it acts in opposite directions

on opposite sides of the plane.

As a numerical example, take a cast-iron bar for which the

factor of lateral contraction A is J; let it be one square inch in

section area and be subject only to an axial tension of 2 400

pounds. Then 5i = +2 4oo and 52=o, whence the maximum
apparent shearing unit-stress is S' = 1 200 pounds per square

inch. From (139) the true axial unit-stress is Ti = +2 400 and

the true lateral unit-stress is T2 = —600 pounds per square inch.

Accordingly the maximum true shearing unit-stress is T' = 1 500

pounds per square inch, which is 25 percent greater than the

apparent. It is indeed very common to find that the true stresses

based on the actual deformations are much larger than the stresses

computed from the common theory, and this is one reason for

the use of high factors of safety.
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The above discussion applies equally well when one or both

of the applied loads is compression. For example, let the axial

unit-stress Si be tension and the lateral unit-stress ^2 be com-

pression, each equal to 2 400 pounds per square inch. Then

the apparent maximum"shearing unit-stress is 5' = ^(2 400 -f- 2 400)

= 2 400 pounds per square inch. For A=J, the true axial stress

is Ti = -1-3 200 and the true lateral stress is 7^2 = —3 200, so that

the true maximum shearing unit-stress is T' = 3 200 pounds pel

square inch, which is 33 percent higher than S'.

When Si and ^2 are equal numerically, both being tension

or both compression^ then S' =0, and also T''=o; that is, a

parallelopiped under imiform stress in two rectangular directions

has no internal shearing stress. The same is true when a body

is acted upon >by equal tensions or pressures in three rectangular

directions, for the third stress ^3 exerts an equal influence upon

the two normal to it.

When there are three unit-stresses Si, S2, S3, acting upon

a paralellopiped in three rectangular directions, the shearing

unit-stress on a plane parallel to Si and 52 is not influenced by

53, and hence ^^i— ^2) is the maximum shearing unit-stress

for such a plane. Similarly, ^(Si—Sg) and i(S2—S3) are the

maximum shearing unit-stresses for planes- parallel to 5] and 52

and to 52 and 53 respectively. The same holds true for the

true stresses Ti, T2, T3; an algebraic discussion of this case

will be found in Art. 178. As an example, let a rectangular

bar be subject to an axial tension of 3 000 pounds per square

inch, and to a compression of 6 000 pounds per square inch iipon

two opposite sides. Here 51 = 4-3000, 52 = — 6000, 53=0,

and hence the three maximum apparent shearing stresses are

4 500, 3 000, I 500 pounds per square inch. But from (139),

taking X as ^, the true axial and lateral stresses are Ti = -I- 5 coo,

X2--— 7 000, ^3 = -I- 1 coo, whence the three maximum true

shearing stresses are 6 000, 4 000, 2 000 pounds per square inch.

Here the true axial stress is 67 percent greater than the apparent,

while the true shearing stresses are 33 percent greater than the

apparent ones.
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Prob. 140. Compute the maximum shearing unit-stresses, both

apparent and true, for the data given in Problem 139.

Art. 141. Combined Shear and Axial Stress

Formulas were deduced in Art. 105 for the maximum apparent

stresses of tension, compression, and shear, due to the simul-

taneous action of an axial load and a cross-shear. It was shown

that there are two planes at right angles to each other upon which

there are no shearing stresses, one being under normal tension Si

and the other under normal compression S2. Let 5 be a given

axial unit-stress of tension and S, the shearing unit-stress acting

at right angles to it. Then the formulas give the following values

of the maximum tensile stress Si, the maximum compressive unit-

stress S2, and the maximum shearing unit-stress S',

5i=i5+(5,2+'i52)i 52=J5-(5,2+i52)i 5'=(5,2+J52)* (141)

It is here seen that the value of 5' is the same as that of ^(51— 52).

Hence when Si and ^2 have been computed, the subsequent dis-

cussion is exactly like that of the last article. When 5 is tension,

as above considered, Si is tension and ^2 is compression ; when 5
is compression. Si is compression and ^2 is tension.

Let X be the factor of lateral contraction, and Ti and T2 the

true internal imit-stresses corresponding to Si and S2- Then,

by (139), the value of Ti is S1-IS2 and that of T2 is S2-XS1;

substituting in these the above values of Si and S2, there are found,

Ti=i(^i-k)S+{i+ X)(Sj'+iS2)i

T2=h{T-x)s-{i+x){sp+\s^)^ ;

from which Ti and T2 may be directly computed. For steel the

mean value of X is \, and hence for this material,

Ti=kS+{{S,^+\S^)^ T2=\S-i{S,^+iS^)i

are the true maximum tensile and compressive unit-stresses due to

an axial unit-stress S and a shearing unit-stress 5, acting at right

angles to it. The true maximum shearing unit-stress acts along

a plane that bisects the directions of Si and ^2 and its value is

T' = ^{Ti—T2). The directions of Ti and T2 are the same as

those of Si and 52, and may be found from the expression for cot20

(141)'
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deduced in Art. 105, namely, cot2^ = -^S/S„ where the two

values of ^ give the angles included between the direction of S

and those of the planes against which Si and ^2 act.

As a numerical illustration, take the case of a steel bolt

subject to an axial tension of 2 ooo and to a cross-shear of 3 000

pounds per square inch. Here 5= +2 000, 5, =3 000, from

which Si = +4 160 and ^2 = — 2 160 poimds per square inch are

the apparent maximum unit-stresses of tension and compression,

and their directions are given by cot 20 = — ^. The two values

of (j) then are 54° 13' and 144° 13', which show that Si makes an

angle of 35° 47' and ^2 an angle of 54° 13' with the axis of

the bolt. The true imit-stresses have the same directions and

their values are Ti = -1-4 880, J'2 = — 3550 pounds per square

inch. For the shearing unit-stresses the maximum values are

5' =3 160 and T' =4 220 pounds per square inch. Here the true

maximum tension is 17 percent greater than the apparent, the

true compression is 64 percent greater, and the true shear is 33

percent greater. There is also a third true compression Ts = — 670,

and two other true shears smaller than S' which act along planes

parallel to Si. It thus appears that the actual internal stresses

corresponding to the deformations of the material are far more

complex than and quite different in value from those computed

by the common theory.

The above discussion considers a bar subject only to a single

axial stress 5 and to a cross-shear Sg. This is a very common

case in engineering practice, but other cases far more complex

occasionally occur where the bar is subject to both axial and

lateral stresses and to shears in different directions. The methods

of treating these cases will be explained in Arts. 177 and 178.

Prob. l4lo. A horizontal bar of cast iron, 2X2X6 inches, is under

an axial compression of 20 000 pounds, and under shear from a uniform

vertical load of 8 000 pounds which rests upon it. Compute the

maximum unit-stresses, both apparent and true, and find the direc-

tions which they make with the axis of the bar.
^

Prob. 141&. What must be the value of 5s in (141) in order that Si

and ^2 may be equal ?
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Art. 142. Trite .Stresses m Beams

The first set of formulas in the last article furnishes the means

of ascertaining the maximum apparent stresses at any point in

the beam, 5 being the horizontal unit-stress for that point as

computed from the flexure formula and S, the shearing imit-stress

as determined by Art. 108. From these the apparent unit-stresses

Si and S2 which act at the given point are computed and then

the true unit-stresses Ti and T'2- The discussion in the last article

also shows that the directions of Ti and T2 are the same as those

.of Si and S2, and hence the lines of maximum stress shown in

Fig. 109 apply equally to both. At the upper and lower surfaces

of the beam where the shear is zero, the unit-stress S, computed

from the flexure formula, is also the true unit-stress ; at the neutral

surface where the shear is the greatest, the true normal stresses

on planes where there is no shear are greater than the apparent

ones. Since the imit-stresses on the upper and lower surfaces

are greater than for any other points in a cross-section, it is never

necessary in practical problems to investigate the true stresses

in a beam.

The upper surface of a simple beam is in compression while

the lower surface is in tension. The width of the beam hence

suffers a lateral expansion in its upper part and a lateral contrac-

tion in its lower part, so that a rectangular section becomes a

trapezoidal one when the load is appHed. This change is so slight

that it is rarely observed, but there is little doubt that it can

be detected by precise measurement. For example, take a steel

beam, 6x6 inches in section and so loaded that the flexural

unit-stress^ at the dangerous section is 30 000 pounds per square

inch. The imit-shortening of the upper surface and the tmit-

elongation of the lower surface will then be £ = 30 000/30 000 000

=0.001; and hence the total lateral contraction of the width

of the beam at the dangerous section will be e=JXo.ooiX6
=0.002 inches, a quantity that can be. easily measured with

precise calipers.

A uniform load resting upon the upper surface of a simple
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beam produces a vertical compression which is to be combined

with the horizontal compressive, imit-stress in order to obtain

the true stresses. Let Si be the flexural unit-stress and ^2 the

compressive unit-stress due to the uniform load. Then the

true maximum compressive unit-stress in a horizontal direction

is Ti =Si — XS2, while that in a vertical direction is T'2=52— A5i.

It thus appears that each compression diminishes the efifect of

the other. Usually ^2 will be small compared with Si, so that

computations are rarely necessary.

A concentrated load resting upon the upper surface of a

simple beam may, however, produce a high unit-stress 52. The

experiments made by J. B. Johnson in 1893, on the contact

between the surface of a car wheel and a railroad rail, show,ed

that the mean compressive unit-stress was about 80 000 pounds

per square inch. A heavy pressure like this entirely alters the

distribution of the stresses and the directions of the lines of maxi-

mum stress in its vicinity, for Ti may become tension, if the

elongation due it can occur. In the contact of wheels on rails,

however, there is no permanent deformation due to the heavy

vertical compressive stress, which indicates that lateral flow or

elongation could not occur. Under such circumstances there is

doubt as to the correctness of the applicability of the preceding

theory to the determination of the true stresses. The case is

perhaps analogous to that of stresses due to change in tempera-

ture, where heavy stresses may arise with but little change in

length; thus, a fall of 200 degrees Fahrenheit in temperature

will produce a unit-shortening of about 0.0014, but this is .prob-

ably sufl&cient to break a wrought-iron bar, if it is prevented

from shortening and is under an initial tension of about 30 000

pounds per square inch.

Prob. 142a. A steel I beam, 20 inches deep and weighing 80 pounds

per linear foot, carries a uniform load of 24 000 pounds on a span of

30 feet. Compute the values of Si and 52 at the dangerous section

and find the true stresses.

Prob. 1426. How must a simple beam be loaded so that the elastic

curve is an arc of a circle?
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Art. 143. Stresses Due to Shear

It is shown in Art. 6, and also in Art. 105, that forces of ten-

sion or compression acting upon a body produce not only

internal tensile or compressive stresses, but also internal shear-

ing stresses. Conversely, an external shear acting upon a body

produces in it not only internal shearing stresses, but also internal

tensile and compressive stresses.

For example, the rectangle ABCD in the web of a plate

girder, shown in Fig. 143a, may be considered. Let V be the

shear at the sections AB and CD, which

are taken very near together so that the

weight in the rectangle itself can be dis- *~
o o"
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sile and the compressive unit-stress is S; that is, a shearing

unit-stress causes equal tensile and compressive unit-stresses in

directions making angles of 45 degrees with the shears.

This may also be proved from the discussion in Art. 105

or from Art. 141. Thus, in formula (141) let the axial tensile

unit-stress S be made zero, then the maximum tensile and com-

pressive unit-stresses Si and ^2 are each equal to 5,. If, how-

ever, Sg=o, then the maximum shearing unit-stress is JS.

Accordingly an axial tension or compression on a bar produces

a shearing unit-stress equal to one-half the tensile or compres-

sive unit-stress, but the action of a shear produces tensile and

compressive unit-stresses equal to the shearing unit-stress itself.

This may be regarded as a most fortunate arrangement in view

of the fact that the shearing strength of materials is usually less

than the tensile strength.

The above'relates to apparent.stresses only. The true stresses

Ti and T2, corresponding to Si and 52, are those that correspond

to the actual deformations, and by (139) their

values are Ti=Si — }S2 and J'2=52 — ASi,

where Si and 52 are to be taken as positive

for tension and as negative for compression.

For example, let Fig. 143& represent one face of

a cube which is subject to the shearing unit-

Fie 1436
stress S of 5 000 pounds per square inch, each

edge of the cube being unity. The distortion

of the square is shown greatly exaggerated by the broken lines,

and both the tension along the longer diagonal and the com-

pression along the shorter diagonal are equal to 5 000 pounds

per square inch. Now if the factor of lateral contraction X is

I, then the true stress along the longer diagonal is Ti = -1-6 250,

while that along the shorter one is J'2=— 6250 pounds per

square inch, so that the true stresses of tension and compres-

sion are 25 percent greater than the apparent ones.

It may be noted that while shear produces distortions, it does

not cause changes in the volume of a body. Thus, for the above

figure, let e be the' elongation or shortening of the diagonals,
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then the length of the longer diagonal is 2*+e and that of the

shorter diagonal is 2*— e; the area of the rhombus then is

i(2*+e)(2*— e) = 1, which is the same as that of the square before

it was subjected to shear.

Prob. 143. A steel beam, 2X2X6 inches, is supported at its ends

and has a concentrated load 40 000 pounds at its middle. Compute

by Art. 108 the greatest shearing stress which occurs at the neutral

axis, and then find the true tensile and compressive unit-stresses which

exist there. Draw a diagram showing the directions of these stresses.

Art. 144. True Stresses in Shafts

When a round shaft is acted upon by torsion alone, the stresses

are those of shearing, and these act along every section normal to

the axis, the maximum 5, occurring at the surface (Art. 90).

Any square in one of these normal sections is hence acted upon

by two equal and opposite shears, as show© in Fig. 1436, and these

produce apparent stresses of tension and compression in directions

bisecting those of the shears. The distussion of the last article

applies in all respects to this case, and from it the true stresses

of tension and compression are seen to be each equal to (i + X)Sg.

When a horizontal shaft carries a load, flexural stresses come

into action and these must be combined with the shearing stresses

in the manner explained in Art. 106. The formulas (141) give

the apparent and formulas (141)' give the true imit-stresses due

to the combination of torsion and flexure; in' these 5 is to be first

computed from the flexure formula (41), while ^g is to be com-

puted from the torsion formula (90) or from the special formulas

of Art. 92. From the last paragraph of Art. 143, it is to be con-

cluded that there is no change in volume of the shaft under torsion

alone; the same js closely the case when flexure is added to the

torsion, because the decrease in volume due to the tension, is

practically the same as the increase due to the compression

(Art. 13).

The compression on the upper surface of a shaft due to a

load, or that on the lower surface due to the upward reaction
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of a bearing, produces stresses which act normally to the flcxural

stresses of tension and compression, while they are also at right

angles to the shearing stresses due to the transniitted torsion.

A formula for discussing this and other more difficult cases is

deduced in Art. 177, and an application of it to the above case

will now be given. Let Sx be the horizontal flexural unit-

stress at the surface of the shaft, Sy the vertical compressive' unit-

stress due to the load or bearing, and 5, the shearing unit-stress

due to the transmitted torsion. Then in formula (177) the

value of A is S^+Sy,' tha,t of B is 5^5,, -5.2, and that of C is

zero, and it reduces to the form

S^-{Sx+Sy)S+S-xSy-S,^=o

in which the two values of S are the maximum tensile and com-
pressive imit-stresses; solving the quadratic equation there re-

sults,

S=US.+ Sy) ± (Sj'+iiS.+Syf-S^Sy)* (144)

where the value of 5 found by using the plus sign before the

radical will be tension or compression according as the value

of ^(Sx + Sy) is tension or compression. When either S^ or Sy
is zero, these values are the same as those given by (141).

As a numerical example, let the flexural compressive unit-

stress Sx under a load or in a bearing of a horizontal steel shaft

be 3 odo, the vertical compressive unit-stress Sy due to the load

or bearing be i 200, and the shearing unit-stress Se due to the

torsion be 6 000, all in pounds per square inch Formula (144)

then gives 5i.= 8 200 pounds per square inch compression, and

52= 4 000 pounds per square inch tension for the maximum
normal stresses; also S' = ^{Si—S2) = 6 100 pounds ppr square

inch is the maximum shearing stress. Lastly, by (139) and (140),

the corresponding true stresses are for compression Ti = 9 500,

for tension Z"2 = 6 700, and for shear T' = 8 100 pounds per square

inch. In common practice it will be considered that the greatest

compression is 3 000 and the greatest shear is 6 000 pounds per

square inch, but the result of this investigation shows that the

true compression is more than three times as great and the true

shear about 40 percent greater.
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Prob. 144. Show that the two roots of (144) are always real whatever

may be the values of Sx, 5^, and S,. What are these roots when 5s is o ?

Art. 145. Pure Stresses

The term ' pure stress ' is employed for cases where only

one kind of stress exists. When a plane is acted upon only by

forces normal to it, the stress on the plane is either tensile or com-

pressive and this is sometimes called 'pure normal stress '. When
a plane is acted upon only by forces parallel to it, the stress on

the plane is that of shearing, and this is sometimes called 'pure

shearing stress '. Upon most planes in the interior of a stressed

body, there act both normal and shearing stresses. The preceding

articles show how to find the maximum vmit-stresses Si and 52

which act normally against certain planes upon which there are

no shearing stresses.

Another use of the term 'pure stress ' is with respect to any

and all planes that can be imagined to be drawn, in the interior

of a body. When the forces acting upon the body have such

values that there can be no shearing stresses within it, the case

is called one of 'pure internal normal stress'. Referring to

Fig. 139 and to the reasoning in the last paragraph of Art. 140,

it is seen that there can be no shearing stresses on any planes

within the body, when 5i =52=53 ; this is the case where the unit-

stresses acting on the six faces of a pa^allelopiped are all equal.

The same result follows when a bod^ is acted upon by equal

compressive forces in all directions, as occurs under hydrostatic

pressure. Under no other circumstances can the interior of a

stressed body be free from shearing stress, and hence this is the

only case of pure internal normal stress^

There is no case of a body having only internal shearing stress,

for the discussion of Art. 143 shows that internal shear must

always be accompanied by normal stresses which act in directions

bisecting those of the two conjugate shears. There may, however,

be certain planes within a body upon which only shearing stresses

jct. In order to find such planes, let Figs. 140a and 1406 be again

considered, and let the forces shown in the latter be resolved
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normal to the diagonal dz. "Let S be the normal unit-stress of

tension or compression on dz; then the total stress on that diagonal

is Sdz and this is equal to Sidy . sm0+S2Sx. cosO. Replacing

dx/dz and dy/dz by their values cos^ and sin^, there is found

S=Sism^d+S2Cos^d. Now when S=o, there is no normal

stress on the plane that makes the angle d with the direction of

Si; this occurs when ta.nd=(—S2/Si)* and on the plane thus

determined only shearing stresses are acting. It is seen that

no value of 6 is possible unless Si and 52 have contrary signs,

that is, one must be tension and the other compression. When
S2=-iSi, then tani9=±o.s and /?=±26J°; when S2=-Si,
then tan(?= ±1 and ^ = ±45°; when 52= -3S1, then tan^= ±1.73
and d= ±60°, and so on. Hence for each negative value of 52/5i
there are two planes equally inclined to the direction of 5i upon

which only shearing stresses act. The following figures show

the three cases computed above.

m

Fig. 145a

^
11.

V
-TT

X X

Fig. 1456

!i ^><S

Fig. 145c

The shearing unit-stresses on these planes of true shear are

not as great as those on the planes bisecting the directions of

Si and 52, for on the latter the maximum shears exist. For

Fig. 145&, however, where the normal tension and compression

are numerically equal, the planes of pure shear coincide with

those of maximum shear; this is the case most frequently men-

tioned as one of pure shear (Fig. 1456), but the above investiga-

tion shows that there may be many other cases.

The term ' pure flexure ' is used for a part of a beam where

there are no vertical shears. For instance, take a simple beam

and subject it to two concentrated loads, each equal to P and

placed at equal distances from the supports. Then there is no

vertical sjhear between the loads, and hence the flexural stresses

above the neutral surface are pure compression, while those
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below it are pure tension. In testing a beam it is sometimes

advantageous to subject it to two equal concentrated loads placed

at equal distances from the middle; thus the bending moment

between the loads is constant, and the changes of length of

the fibers are uniform at equal distances from the neutral

surface. The experiments of Talbot on steel-concrete .beams,

described in Art. 116, were made in this way. It must be noted,

however, that there prevail in all directions, except horizontally

and vertically, shearing unit-stresses accompanying the pure

tension and compression; if 5 is the flexural unit-stress at any

point between the loads, then J5 is the maximum shearing unit-

stress which makes angles of ±45° with the direction of 5.

Prob. 145a. In the formula 5„=5'i sin^6+S2 cos^6, let 5i be larger

than 52. Show that the values of 5„ cannot be greater than ^i nor

less than Sz- This is the equation of a curve in polar coordinates,

Sn being the radius vector for the variable angle d; what kind of a

curve is it?

Prob. 1456. A parallelepiped is acted upon by normal unit-stresses

of 6 400 and 2 800 pounds per square inch in directions at right angles

to each other, the first being tension and the second compression.

Compute the pure shearing unit-stress and the maximum shearing

unit-stress, and find their directions.

Art. 146. Internal Friction

In all the preceding discussions, the applied forces and

the internal stresses have been supposed to be in equilibriunii,

this being the case where the applied forces have attained the

full magnitudes so that no further deformation of the body occurs.

Other considerations enter during the period while the defor-

mations are occurring under applied forces which increase from

zero up to their final values. During this period there are motions

of the molecules, and this motion is resisted by inteijial friction,

just as the motion of a book upon a table is opposed by the fric-

tion between the surfaces of contact. The planes of maximum

stress, found in the preceding articles, are hence not the cor-
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rect planes of greatest stress during the period while the defor-

mation of a body is occurring.

The subject of internal friction was first recognized in the

experiments made by Tresca, about i860, on the flow of metals

under high compressive stress, but it was not until after 1890

that it 'received careful attention. In 1893 the remarkable dis-

covery was made by Hartmann that lines of stress became visible

on the surface of polished metallic specimens when the elastic

limit of the material was reached or surpassed, and that these

lines remained after the loads were removed. Fig. 146a repre-

sents such lines for specimens of rectangular section,* and- it is

seen that in compression they make an angle with the axis less

than 45 degrees, while in tension this angle is greater than 45

degrees. It was observed that the sum of these two angles was

always 90 degrees for the same metal and that the directions

of the lines were independent of the size and length of the speci-

men and of the unit-stress. The number of lines, however,

increased as the unit-stress increased from the elastic limit to.

the ultimate strength. For-lhe case of tension, Hartmann found

that the angle
(f>

which the lines make with the axis of the bar

was 65 degrees for nickel steel, 63 degrees for tempered steel,

and 58 degrees for annealed steel; for compression the angle d

between the lines and the axis was the complement of
<f).

When round specimens of metal with polished surfaces were

subjected to stresses above the elastic limit of the material, it

was found that the lines were not straight but spiral, as shown

in Fig. 1466, these spirals making the same angle with the axis

as the straight lines on the rectangular specimens. Under the

microscope it was noted that, in general, these lines were depres-

sions below the intermediate surfaces and that the larger lines

seen by the naked eye were really several small hues very near

together. Hartmann also experimented on spheres and beams,

finding that curved lines appeared on their polished surfaces

when the elastic limit of the material was reached or surpassed,

their directions always remaining the same in the same speci-

men. The lines for 9, beam shown in his book Deformations
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dans les M^taux (Paris, 1896) have very little resemblance to

any of the theoretic lines of maximum stress which are shown

in Fig. 109.

These interesting lines probably indicate the directions of the

planes or surfaces on which the sliding or shearing of the mate-

rial is beginning to occur. This supposition is strengthened by

the phenomena of the rupture of brittle materials under com-

pression, where it is foimd that the 'failure ultimately takes place

by shearing along planes inclined to the axis of the specimen,

as Fig. 1696 shows for cement and timber. These planes make

angles with the axis varying from 10 to 40 degrees, the angle for

stone usually being about 20 and that of cement and concrete

about 30 degrees. Also it is observed that metallic bars under

tension sometimes rupture with an oblique or cup-like fracture,

the inclination of which to the axis is 50 degrees or more. It may
therefore be regarded as almost demonstrated that materials begin

to fail, both in tension and compression, by shearing along obKquc

planes, and that the commencement of the failure is at the time

the elastic limit of the material is reached.

t t t i i_\ _t ^^

Fig. 146a Fig. 1466

The theory of internal stress, set forth in the preceding articles

of this chapter, shows that the maximum shearing unit-stresses,

both apparent and true, are those upon planes making angles of

45° with the axis of the bar. Since the actual planes of failure

ire greater than 45° for tension and less for compression, it must
be concluded that some resisting force acts during the progress
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of the deformation which has not heretofore been considered,

and this resistance is probably that of friction. Much attention

has been given to this question since 1895, and the work of Rejto,

pubhshed in 1897, endeavors to account for the brittleness, plas-

ticity, ductility, and even the strength of materials, by the help

of coefficients of internal friction.

Prob. 146. Consult Rejto's Innere Reibung der fasten Korper,

and explain his formula for the tensile strength of materials.

Art. 147. Theory of Internal Friction

When one surface begins to slide on another, the ratio of the

force parallel to the sliding surface to the normal pressure is called

the coefficient of friction; it is an abstract number and may

be designated by v. Let N be the normal pressure or stress

between the two bodies and P the force which just begins to cause

motion when it acts parallel to the surface of contact, then the

approximate law of sliding friction is given by F=vN. This

law may be applied, tentatively at least, to the case of a bar

under axial stress, during the period while the stress is increasing

up to its final value, and it may be supposed that sliding or shearing

is then beginning to occur along surfaces indicated by the.Unes

and planes described in the last article. There is hence a coeffi-

cient of internal friction fi, which is not necessarily the same as

that of sliding friction but which may be used in the same manner

by means of the law F=fiN.

The simplest case is that of a bar subject to axial compression,

as in Fig. 147o. Let the section area be unity and_5 be the

compressive unit-load which causes the equal axial unit-stress

S on all planes normal to the axis. Let any plane mn be drawn

cutting this bar, and let d be the angle which it makes with the

axis. When there is no axial stress in the bar, there exists normal

to this plane a molecular unit-force So which binds together the

two parts so that no motion can occur. When the axial com-

pressive unit-stress is applied, this causes a compressive stress

S sind normal to the plane, and since the area of the plane is
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i/sin^, the compressive unit-stress is S sin^^. The total normal

pressure per square unit on the plane then is N—So+S sin^d.

The force acting parallel to the plane is S cos5, or i^=5 cos5 sin^

for each square unit. Accordingly, if motion is just beginning,

5cos^sin^=/£(5o+5 sin^^) or 5=;«5'o/(sin5 cos&— //sin^^)

Now let d be regarded as varying from o to 90°, then the imit-load

S required to cause motion will vary from 00 to ^o, and it follows

that the motion will actually begin along that plane which has

such a value of d that S shall be a minimum; or the value of S
which causes motion to begin is less for the plane of motion than

for any other plane. This requires that sin^cos^— /tsin^^ shall

be a maximum, and the value of d which renders it such is foimd

to be given by cot 26= ft. Hence,

fi=cot2d fiSo=iS ta.nd=iS{-ftWi+ ff) (147)

gives the relations between the quantities //, 6, and So. The

observed angled is always less than 45°; for dififerent qualities of

steel, 6 lies between 25° and 32° and hence the coefl&cient of

internal friction lies between 0.84 and 0.49.

^\/;^^
^''-

Fyv^%
Jf^

—
7fe

Fig. 147a Fig. 1476

In considering the case of tension shown in Fig. 14:7b, let
<f>

be the angle which a plane mn makes with the axis. Then the

normal unit-pressure on the plane is Sq—S sin^^, and the force

per unit of area acting parallel to the plane is 5 sin^ cos^. For

the case of incipient motion, the law of friction then gives,

S cos^ sm(f>=fji{So~S sin2^) or 5=ju5o/(sin0 cos<f>+fi sin^cf))

and, by the same reasoning as before, it is concluded that the

actual plane of motion is that which renders sin<^ cos^ -I- fi sm^<f>

a maximum, and this maximum obtains when cot
2(f)
= —fi.

Accordingly,"

ft= -cot 2^ fiSo= iS tan <{>= iS{fi -FVTFP) (147).
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are the equations applicable to tension in which <j) is observed to

be always, greater than 45 degrees.

Since the coefficient of internal friction p. must be regarded

as a constant for the same material, it follows that the angles d

and <j> are necessarily complementary, for by equating the two

values of n the relation between the angles is given by ^+0=90°.
The above theory may hence be said to explain why it is that

the lines described in the last article make an angle with the axis

which is less than 45 degrees for compression and greater than

45 degrees for tension, and why these angles are comple-

mentary.

It seems a reasonable assumption to regard [iSq as the ulti-

mate shearing strength S, of the material, since /iSq equals the

force per unit of area which will cause shearing along the plane.

When a brittle specimen is ruptured by direct compression,

failure generally occurs by shearing along one or more planes

which make an angle d with the axis less than 45 degrees, and

accordingly 5s = ^5ctan^ may be written as a tentative formula

for the relation between the ultimate shearing strengths S, and

the ultimate compressive strength Sc- The following are rough

approximate values of 6 as observed in compressive tests, together

with the values of (i and SJSc as computed from (147)

:

Anthracite Coal
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is closely the same for both bars, and it hence seems that 5 in

(147) should be the same as 5 in (147)', which requires d and

^ to be equal. This is a result altogether at variance with experi-

ment, and it must hence be concluded either that Sq in tension

is different from Sq in compression or that the above reasoning

is defective in failing to include one or more elements that must

ultimately be introduced in order to perfect the theory. Much
work still remains to be done on this important subject, both

in theory and by experiment, before definite ideas can be formed

regarding the true internal stresses which prevail while a body

is undergoing deformations. The theory of Arts. 139-145 relates

only to static ^tresses, namely, to those which occur when the

applied forces have attained ritheir full magnitudes, so that both

external and intsmal equilibrii;(m prevails. This static theory

appears to be correct,^ eVery detail for static stresses which

do not surpass the elastic limit of the material, but the perma-

nency of the lines of shearing seen upon polished metallic speci-

mens, seems to throw a doubt upoi| its entire applicability to

cases where the elastic limit /is surpassed, even though com-

plete equilibrium exists. As far as ti^el internal static stresses

are concerned, this theory iis^pndeed pot necessarily vahd, for

formulas (139) apply only whin th^plastic limit, but for the

apparent static stresses it shoflld be valid for all cases. In order

that the full and complete "truth may be ascertained, further

studies on internal friction and on internal molecular forces are

absolutely necessary.

In conclusion it may be noted that the idea of internal fric-

tion throws light upon the fatigue of materials under repeated

stresses (Art. 137). For the case of compression where heat

is evolved for stresses both below and above the elastic limit,

it is not difficult to see that energy is expended in changing the

positions of the molecules at each application of stress; for the

case of tension the same occurs for stresses higher than about

three-fifths of the elastic limit. The material is hence fatigued

or changed in structure by the internal friction, and this change

should be greater for large ranges of stress than for small ones.

Undoubtedly the complete explanation of fatigue is closely allied
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to that of internal friction and to changes in internal molecular

forces. The indications are that any stress, however small, will

produce fatigue when it is repeated a number of times in a material

that has a crystalline structure. Steel is such a material and the

various crystals that are seen in it under the microscope have

cleavage planes which are weakened by the detrusion due to, re-

peated stress.

Prob. 147a. Five constants have thus far been used in this volxune as

applicable to a material when stressed up to its elastic limit in tension.

What are these constants?

Prob. 1476. Consult The Iron and Steel Magazine for July, 1905,

and read an article on the failure of an iron plate Ihrough fatigue.

Also consult other volumes of this periodical, and ascertain the names

and characteristics of the various crystals which are seen in steel.
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Chapter XVI

GUNS AND THICK CYLINDERS

Art. 148. Facts and Principles

The discussion of pipes under internal pressure, given in

Art. 30, was made under the assumption that the thickness of

the pipe is small compared to its diameter, so that the tensile

stress of the metal of the pipe might be regarded as uniformly

distributed. Pipes under high internal pressure have thicknesses

sometimes nearly equal to the inside diameter, and in such the

tensile stresses are not uniformly distributed. The steel pipe

used to transmit water pressure to the large forging press of the

Bethlehem Steel Company, in South Bethlehem, Pa., has an

inside diameter of i6 inches, a thickness of 8 inches, and it is

subject at times to a pressure of s 6oo pounds per square inch.

The theory of the investigation and design of thick pipes will be

developed in this chapter.

The gims used in modem warfare are subject to high internal

pressures produced by the explosion of the powder. These

pressures are measured by noting their effects in shortening small

copper cylinders and comparing these deformations with those

produced by known loads in a' testing machine. In this manner

it has been ascertained that powder pressures of 50 000 pounds

per square inch are often produced during the firing of a gxm,

while the extreme pressure of 88 oco poimds per square inch has

been observed in a special experiment. In order that the metal

of the gun may not be stressed beyond its elastic limit vmc^er

these heavy pressures, it is necessary that the thickness should

be large. For inside diameters greater than 3 inches, the gim

is generally formed of two or more concentric cylinders, the inner

one being called the 'tube' and the others 'hoops'; these hoops

are shrunk upon the tube (Art. 32) so that they produce com-

pression in it and thus enable it to carry a heavier powder pressure



384 Guns and Thick Cylinders Chap, xvr

than a solid tube of the same total thickness. The first hoop

around the gun tube is often called the 'jacket'.

Fig. 148 gives a longitudinal and a cross section of a gun having'

two hoops, the breech block that closes the powder chamber A
being omitted. This breech block can be swung open to admit

the projectile and the powder case, the position of the former

being at B. Before the explosion the breech block is swung into

place and locked. At the instant of the explosion the pressure

of the gas is the greatest since it is then confined to the spaces A
and B\ this part of the gun is called the breech, and here it is

that the greatest thickness is required ; over the breech and extend-

ing some distance forward, the figure shows two hoops £ and F
surrounding the gun tube Z>. As the projectile moves toward

the muzzle, the gas occupies a larger volume, so that its pressure

decreases and becomes zero as the projectile leaves the gun.

The tube C has spiral grooves cut in its inside surface, which cause

the projectile to have a rotary motion. In designing a gun of

this kind it is required that the section areas at the forward end

of each hoop shall be sufficient to resist the maximum powder

pressure which can there be exerted.

c
^^

N S
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Erob. 148. The diameter of a powdei chamber is 8| inches and

that of the projectile is 8 inches, while the pressure during the explosion

is 48 000 pounds per square inch. Compute the total forward, pres-

sure on the projectile and the total backward pressure on the breech

block. Where does the difference of these pressures take effect?

Art. 149. Lame's Formula

Let a thick hollow cylinder, shown in Fig. 149fl, be subject to

a pressure Ri on each square unit of the inside surface and to a

pressure i?2 on each square imit of the outside surface. The
inside pressure may be produced by the expansion of a gas and

the outer pressure by the atmosphere or by other causes. It is

required to determine the internal stresses produced by these

pressures at any point in the cylindrical annulus not very near

the end. The length of the cylinder is to be regarded as con-

siderably longer than the outer diaineter, in order that the dis-

turbing influence of the ends may not affect the reasoning.

T
^.

Fig. 149a

Let ri and rz be the inside and outside radii; then the inside

pressure on the end of the closed cylinder is nr^Ri and the outside

pressure on that end is nr^Rz- The usual case is that where the

inside is greater than the outside pressure, and then n{r^Ri—r^R^
is the longitudinal tension in the annulus. For any part of the

cylinder, not very near the end, this tension must be uniformly

distributed over the cross-section of the annulus. The longi-

tudinal tensile unit-stress So in the annulus is hence a constant

for all points, and its value is found by dividing the total tension

by the section area a; whence,

This longitudinal unit-stress, together with the radial pressures,
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causes a longitudinal elongation of the cylinder, which is also

to be regarded as uniform for all parts of the annulus, not very

near the end. Under these assumptions, the theory of true stress

given in Art. 139 may be applied to the determination of the unit-

stresses at any point in the cylindrical annulus.

Let X be the distance from the axis of the cylinder to any
point in a cross-section of the cylindrical annulus. Any ele-

mentary particle is here held in equilibrium

by the longitudinal imit-stress Sq, a tan-

gential unit-stress S, and a radial unit-

stress R. The value of R is evidently inter-

mediate between Ri and R2; in Fig. 1496

both R and S are regarded as tensile.
Fig. 1496 ^^^ j^^^ ^^_ jgg ^^ effective- longitu-

dinal unit-elongation of the cylinder due to these three stresses is,

. £q=T/E={So-XS-XR)/E

in which X is the factor of lateral contraction the mean value

of which for wrought iron and steel is about \. But, as above

noted, both sq and So are constant for all parts of the annulus,

and it hence follows that,

5-|-i?=constant or S+R=2Ci

which is one equation between the unit-stresses S and R where

Ci is a quantity whose value is to be determined by establishing

a second equation.

Let an elementary annulus of thickness dx be drawn; its

inner radius is x and its outer radius is x+8x. The pressure

for one unit of length in a direction perpendicular to any diam-

eter is Rx for the inner surface and {R+8R){x+8x) for the outer

surface of this elementary annulus. -Thus, exactly as in the

case of a thin pipe (Art. 30), the equation of equilibrium between

acting pressure and resisting stress is,

{R+dR){x+dx)-Rx=S8x '

or xdR+Rdx=Sdx

which is a second equation between the unit-stresses S and R.

The solution of these two equations is readily made by insert-

ing 2C1—R for S in the second equations and integrating; then,
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5=Ci+^ R=C,-^ (149)

where C2 is a constant of the integration the value of whicli is

to be determined by regarding the limiting values of R, these

being the inner and outer unit-pressures i?i and R2. It is best

to regard these unit-pressures as without sign, and then R = —Ri
when x — ri, and i? = — i?2 when x = r2; inserting these condi-

tions in the second formula, there result two equations from which,

Ci= (n2i?i-r22i22)/(r22-ri2) C2-=riW^Ri-R2)/(r^-ri^)

and, inserting these constants ia (149), are now obtained,

S={ri^Ri-r2^R2+'^iRi -R2)) / (r^-n^)

R=[rr2Ri -r^R^-ll^iR, -R2)'j / (r^-n^)

which are Lamp's formulas for the tangential and radial unit-

stresses in hollow cylinders under inside and outside pressures.

In deriving these formulas, both S and R have been supposed

to be tension; this will be the case if their values are positive,

while a negative value will indicate compression.

The tangential unit-stress S is usually greater than the radial

unit-stress R, and is the controlling factor in the design of guns

and thick cylinders. It is seen to increase as x decreases, and

hence it is the greatest at the inside surface of the cylinder; it

may be either tension or compression, depending upon the rela-

tive values of the given radii and unit-pressures. The radial

unit-stress R is always compression, its value ranging from Ri

at the inside surface to R2 at the outside surface.

As a numerical example, let a cylinder be one foot in inside

and two feet in outside diameter, the inside pressure being 600

and the outside 15 pounds per square inch. Here ri=6, ^2 = 12,

J?i=6oo, J?2 = i5, and the formulas become,

5=180+28 o8o/x2 22= 180-28 o8o/a;2

Here x varies between 6 and 12 inches, and S ranges from -I- 960

to +375 pounds per square inch, while R ranges from —600

to —15 pounds per square inch, 4- denoting tension and — denot-
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ing compression. The tangential unit-stress 5 is hence about 2J

times greater at the inside surface of the hollow cylinder than

at the outside surface.

Prob. 149. A solid cylinder is subject to a uniform radial pressure

of i4 000 pounds per square inch on its surface. Prove that the radial

unit-stress is uniform throughout the cylinder. Prove that the tangen-

tial unit-stress is uniform throughout the cylinder, and find its value.

Art. 150. Thick Pipes and Solid Guns

Lamp's formulas have been widely used for the discussion

of water pipes and soUd guns. The inside unit-pressure Ri is

usually large compared to the pressure of the atmosphere on

the outside surface so that the latter may be neglected. The

unit-stresses 5 and R at any point within the cylindrical annulus

then are,

A discussion of this equation shows that the tangential unit-stress

5 is greatest when a;=ri and least when x=r2, and that the

radial unit-stress R varies similarly. Thus, for the inside surface,

Sx=^Rx{ri^r^)Kri-r^) and R=-R^ (150)

, while for the outside surface of the cyHnder,

S2=Rx . 2r^Kri-r-?) and R=o

and accordingly the greatest unit-stresses, as given by (150),

are those generally used in investigation and design. The man-

ner in which S varies

throughout the annulus

is shown in Fig. 150 by

. the arrows. It is seen

^ that the different parts

of the annulus are un-

equally stressed under

the tangential tension,

the law of variation of

P'g- ^^^ the imit-stresses being

that which is expressed by the first equation in formula (149).
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As a special case, let the radius of the outside surface be

double that of the inside surface, or r2 = ari. Then for the inside

surface where x=r\ the tangential unit-stress is Si=|i?i; for

the outside surface, where x=r2, it is 5'2=§i?2; for a point half

way between these surfaces it is ffi?i, and all of these are ten-

sion. For the same case the radial unit-stress for the inside

surface is —Ri, for the outside surface it is o, and for a point

half way between them it is — |i?i, all being compression as

indicated by the minus sign.

The first formula of (150) was formerly much used for the

investigation of guns and thick pipes, and it is still valuable for

general discussions. As an example, let a solid steel gun have an

inside diameter of 7.5 inches at the powder chamber and the

thickness of the tube be 1.75 inches. Let it be required to find

the greatest tensile unit-stress produced when the inside pres-

sure from the explosion is 10 000 pounds per square inch. Here

''i=3-7S inches, 7'2 = S.5o inches, i?i = ioooo pounds per square

inch. Then from the formula 5i is found to be 27 300 pounds

per square inch, which is but little more than one^half the elastic

limit of gun-steel, and hence the degree of security is ample.

As an example of design, let the inside diameter be 3.25

inches, the pressure caused by the explosion 15 000 pounds per

square inch, and the allowable unit-stress in tension be 30 000

pounds per square inch ; and let it be required to find the outside

diameter. Here ^1 = 1.625 inches, i?i = i5ooo, and ^1 = 30000
pounds per square inch. Then solving for r2, there results,

»-2=>-i[(5i-t-i?i)/(5i-i2i)]i (150)'

from which the outside radius r2 is found to be 2.815 inches;

thus the thickness of the tube is 1.19 inches, and its outside

diameter is 5.63 inches.

When formula (150) is applied to a thin pipe, ^2 is to be re-

placed by ri +t, where t is the thickness, and fi may be neglected

when it is to be added to ri^. The formula then reduces to

tSi = Ri{r+t), which is slightly more accurate than that of (30),

and it gives slightly larger values of ^i in investigation and slightly

larger thicknesses in design. Neglecting t in comparison with
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r, this becomes tSi=riR, which is the same as the common for-

mula for thin pipes derived in Art. 30. Either of these formulas,

however, would lead to grave error when applied to a pipe whose

thickness is as great as one-half its diameter.

From formula (150)' it is seen that rg becomes infinite when

Ri equals S, that is, the inside imit-pressure must never be greater

than the allowable tensile unit-stress of the material. Cast-iron

cylinders for small forging presses have been used under pressures

as high as 5 000 pounds per square inch, and it hence follows

that the actual unit-stress S must have been much higher than

this ; the thickness of sudi cylinders is usually greater than the

inside radius. The indications of experience are that factors of

safety for thick pipes under pressure may be much lower than

for thin ones.

Prob. 150. A solid gun tube is 6 inches in diameter and 3 inches

thick. What is the inside pressure that will produce a maximum tan-

gential tension of 30 000 pounds per square inch ?

Art. 151. A Compound Cylinder

In a solid gim the maximum tension occurs at the inside sur-

face during the explosion, rising suddenly from o up to its greatest

value Si. If now the metal near the bore can be brought into

compression, this initial stress must be overcome before the

tension can take effect, and thus the capacity to resist the inside

pressure is increased. One method of producing this compression

is by means of a hoop, or jacket, shrunk upon a tube so as to

produce an outside unit-pressure R2 over the surface of the tube.

This arrangement may be called a hollow compoimd cyUnder.

In its normal state of rest, the inner cylinder or tube has no

pressure on its inner surface and R2 on each square imit of its

outside surface. Making Ri = o in (149)' and also x=ri and

a;=r2 in succession, there are found

which are the tangential unit-stresses at the inside and outside

surfaces of the tube due to the external pressure R2. Both of
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these are compression, but the former is numerically greater

than the latter, since 2r^ is greater than r2^+'"i^- H the hoop

is to be shrunk on so as to produce a compressive unit-stress S^

at the inner surface of the tube, the imit-pressure R% upon

the outer surface must be,

and the shrinkage may be so regulated as to produce this pressure

i?2 in the normal state of rest. Then the tangential stresses

throughout the tube are all compression, while the radial pressures

range from R^ on the outer surface to o on the inner surface. .^

As an example, let ri = 2 inches, >'2 = 3 inches, and let it be

required to find the outer pressure which will cause a tangential

compressive linit-stress of i8 ooo pounds per square inch at the

inside surface of the tube. Here the last formula gives R2
= 5 000 pounds per square inch, and hence the hoop must be

shrimk upon the tube so as to produce this radial pressure at the

surface of contact of hoop and tube.

When the gun is fired, the explosion of the powder causes

an internal tangential tension 5 given by (149)', the greatest

value of which is at the inside surface of the tube. Making x=r\,

this tensile unit-stress is found to be,

which is Lame's formula for the investigation of the tube of a

compoimd gtm. This tension first overcomes the initial com-

pression S^ due to shrinkage, so that the maximum tensile unit-

stress at the inner surface during firing is 51—5^. In Fig. 155

the line Aa represents the compression S^ at the inner surface

of the tube before the firing, aai the total tension Si produced

during the explosion, and Aai the actual tension Si— 5^ during

firing. For example, if the radial pressure R2 is made such that

the tangential compression S^ is 30 000 poimds per square inch,

and if the inside tensile stress-imit Si due to the powder ex-

plosion is 65 000 poimds per square inch, then the actual tension

at the inside surface of the tube is 35 000 pounds per square inch.

For example, let a tube whose inside and outside diameters
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are 4 inches andv6 inches be hooped so that a" tangential com-

pression of 18 000 pounds per square inch is caused at the bore,

while the inside pressure caused by the explosion is 25 000 pounds

per square inch. It is required to find the tangential stress at

the bore during the explosion. Here ri = 2 and ^2=3 inches,

i?i = 25ooo, and i?2= 5ooo, as seen above. Then 51=47000
pounds per square inch is the tension due to the explosion, but

before this can take effect the initial compression of 18 000 pounds

must be overcome. Hence the resultant tension at the bore

during the firing is 470x30—18000=29000 pounds per square

inch. If this tube has no hoop, the tension at the inside surface,

found by the method of the last article, is 57 200 poimds per

square inch. The very great advantage of the hoop in diminish-

ing the internal stresses during the firing is. hence apparent.

Prob. 151. A gun tube 3 inches in diameter and 1.5 inches thick

is hooped so that the tangential compression on the inside surface

is 30 000 pounds per square inch. What powder pressure Ri will

produce a resultant tangential tension on the inside surface of 30 000

poimds per square inch?

Art. 152. Clavaeino's Formulas

The preceding method of investigating gun tubes is defec-

tive in that the two unit-stresses S and R are the apparent and

not the true internal unit-stresses.^ It was shown in Art. 139 that

the true stresses are those corresponding to the actual deforma-

tions, and that they are determined from the apparent stresses

by help of the factor of lateral contraction X. For gun-steel the

value of A is usually taken as J. Lamp's formulas were deduced

in 1833, but it was not until about 18S0 that they were modified

by Clavarino so as to give the true internal stresses.

At any point in the annulus of a hollow cylinder (Fig. 1496)

the apparent tangential, radial,.and longitudinal unit-stresses are

5, R, and Sq. Let T be the true tangential unit-stress, then

from (139) its value is T=S-XR-lSo; inserting in this the

values of S, R, and So found in Art. 149,and taking the factor



Art. 152 ClaVARINO's FORMULAS 393

of lateral contraction as J, it reduces to,

T={ri^Ri-rM2+^^{Ri-R2))/3(r2^-ri^) (152)

which is Clavarino's formula for the tangential unit-stress. This

is the principal formula for the investigation of steel guns and

thick pipes.

This formula shows, as before, that the tangential stress is

greatest at the inside surface of the cylinder. Making x=ri, the

true internal maximum unit-stress is found to be,

Ti=[iri^+W)Ri-Sr^R2]/3(.r^-ri'') (152)'

which is the practical formula for the discussion of the most

common cases. Ti may be either tension or compression, depend-

ing upon the relative values of the pressures and radii.

Clavarino's formulas have been generally used since 1885 in

the investigation and design t)f guns, instead of those of Lame.

In order to compare them, the particular case where the outer

diameter is double the inner diameter may be considered. Here

r2 = 2ri and formulas (149)' and (152)' reduce to,

Si=K5Ri-^R2) Ti^^ii7Ri-2oR2)

Now if i?2 =0, the first formula gives a smaller unit-stress than

the second; if i?2=i?i, the first gives a unit-stress three times

as large as the second; if i?i=o, the first gives a value some-

what larger than the second. Thus, since the second formula

gives undoubtedly a better representation of the true stress than

the first, it follows that Lame's method errs on the side of danger

for a solid gun and on the side of. safety for a hooped tube. The

value J here used for the factor of lateral contraction is that

employed in the United States by both the Army and the Navy

in gun formulas, and also generally in Europe; in France, how-

ever, the value £ = J is adopted.

For a thick pipe or sohd gun, the outside pressure R2 is zero,

and formula (152)' can then be written in the forms,

the first of which may be used for the investigation and the second
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for the design of hollow cylinders. According to the second

formula, the inside unit-pressure i?i can never be as large as three-

fourths of the allowable tensile unit-stress Ti, and this may be

taken higher than for a thin pipe. For example, let it be required

to find the thickness of a steel pipe 8 inches in inside diameter,

under a head of water of i 200 'feet, this including the effect of

water ram (Treatise on Hydrauhcs, Art. 148), the allowable

tensile unit-stress to be 15 000 pounds per square inch. Here

ri = i5ooo, and i?i =0.434X1 200 = 520 pounds per square

inch, and then the formula gives ^2=4.18 inches, whence the

required thickness is 0.18 inches. From the old formula (150)',

the thickness is found to be c.22 inches.

Prob. 152. Solve Problem 150 by the formulas of this article and

compare the results found by the two methods.

Art. 153. Birnie's FoRMtiLAS

The preceding articles present an outline of the methods of

investigating stresses in guns by the formulas of Lame and

Clavarino. The formulas of Lame refer to apparent stresses

only; those of Clavarino, although referring to true stresses,

are not strictly correct for hooped guns at rest because they are

deduced for a hollow cylinder with closed ends. Now a gun

at rest has no inside pressure and no closed end and hence

there can be no external longitudinal stress upon it; accordingly

the unit-stress So should be zero for a' gun at rest. The true

tangential unit-stress T then is S--\R; using the values of-

5

and R deduced in Art. 149, there results for any point in the

annulus, at a distance x from the axis,

T={2n^Ri-2r2^R2+^^{Ri-R2))/i{r^-ri^) (153)

which is Birnie's principal formula for the discussion of hooped

guns at rest. Making x = ri, this becomes,

ri=[(2n2+4r22)i?i-6r22i?2]/3('-22->'i2) (153)'

which is the tangential unit-stress at the inside surface of a hoop
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with the radii ri and r2 and is under the pressures Ri and R2.

For the gun tube itself, i?i is o during the state of rest.

B.imie's formulas are used in the ordnance bureau of the

United States Army for the discussion of gun tubes and hoops,

both at rest and during the firing. To compare the formulas of

Clavarino with those of Bimie, the particular case of a hoop

pr pipe where r2 = i.2ri may be considered. Then (152)' and

(153)' reduce to,

Ti= s.i2Ri-5.56R2 and ri= s.88i2i-6.3sJ?2

Now if J?2 =0, as for a solid gun during firing, the second formula

gives a tangential imit-stress 15 percent larger than the first;

if i?i =0, as for a hooped gun at rest, the second gives a unit

stress 18 percent larger than the first. Thus for this case Cla-

varino's formulas appear to err toward the side of danger.

Bimie's formulas apply only to hoops and tuTjes upon which

the longitudinal stress is zero, and this is not the case during

the explosion. For a solid gun, or for a tube attached to the

breech block, a more correct formula may be found by con-

' sidering the actual value of Sq due to the inside pressure. Here

the longitudinal pressure is Tzri^Ri, and this produces longitu-

dinal tension upon the a.Tesin(r2^—ri^),so that So =ri^Ri/ (r^^ ~ri^)

is the apparent longitudinal unit-stress. The true tangential

stress T at any point in the annulus then is S—^R—^Sq, and

accordingly,

T=(ri''Ri-2r2^R2+^^{Ri-R2))/3ir^-ri^)

This gives values of T lower than those found from the formulas

of Clavarino and Bimie. For x=ri it becomes,

Ti=[{ri^+W)Ri-6r2^R2]/3iri'-ri^)

which is the true tangential imit-stress at the inside surface of

a hooped gun during the explosion, R2 being the pressure upon

its outside surface due to the shrinkage of the hoop. For a simple

gun tube or water pipe where i?2=o, this formula agrees with

that of Clavarino; for a hooped tube at rest, it gives a value of

Ti which is 20 percent greater than that of Clavarino.
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Prob. 153. Solve Problem 150 by the formulas of this article and

compare the results with those of Problem 152.

Art. 154. 'Hoop Shrinkage

Let e be the elongation or contraction of any radius x, then

2TTe is the elongation or contraction of any circumference 2Ttx.

Now 2-Ke/2nx is the change in the circumference per imit of

length due to the unit-stress T; hence e/x=T/E, and e={T/E)x

is the change in length of the radius of the circle due to the tan-

gential imit-stress T. When x—ri, the deformation ei is that

of the radius of the bore due to the unit-stress Ti; if x=r2, ih&

deformation 62 is that of the outside radius where the unit-

stress is T2.

Suppose a compound cylinder to be formed by shrinking a

hoop upon a tube. The inside radius of the tube is ri and its

outside radius f2; the inside radius of the hoop is rg and its outside

radius ^3. In consequence of the shrinkage the radial unit-pres-

sure i?2 is produced between' the two surfaces; this Causes the

tube to be under tangential compression

and the hoop to be tmder tangential ten-

sion. It is required to find these stresses

when the original inside radius of the hoop

is less than that of the outside radius of the

tube by the amoimt e.

„. ,,. Let e2 be the decrease in the outside
Fig. 154

. . .

radius of the tube and 62' the increase in

the inside radius of the hoop; then 6=62+62'. In Fig. 154,

which is much exaggerated, cd represents 62 and he represents

62'. Also, let T2 be the tangential compression at the outside

surface of the tube due to the shortening 621 and let T2' be the

tangential tension at the inside surface of the hoop due to the

elongation 62'. Then

e=={T2/E)r2+{T2'/E)r2 or T2+T2'=Ee/r2

which gives one equation between T2 and T2'.

Formula (153)' is applied to the tube by making i?i=o and
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x=r2; thus the tangential compression is,

Formula (153) is applied to the hoop by replacing i?i by R2, Rz

by o, Tx by r2, and ^2 by rz; then for x=r2, there results,

T2'=R2{2ri+Ar^)/2,{rz^-T^)=PR2

which is the tangential tension. Dividing the first of these ex-

pressions by the second, there is foimd,

T2/T2'=a/§ or ^T2=aT2'

which is a second equation between T'2 and Tz'.

The solution of these two equations furnishes the values of

T2 and T2' in terms of known quantities; then,

Ee a £e /? ^

^2= rb * 2 = 7-3 (154)
r2 a+p r2 a+p ^ '

in which a and ^ depend only on the radii, or,

and thus the tangential compression at the outside surface of the

tube and the tangential tension at the inside surface of the hoop

may be computed. The tangential compression at the bore is,

however, greater than T2, and it may be found from (153) by

substituting the value of R2, now known, and making x=ri;

thus,

ri= r2.3'-2V(2ri2+r^)

is the greatest compressive unit-stress in the tube due to the

radial pressure of the hoop.

As a numerical example, let a compound cylinder be formed

of a steel tube whose inside radius is 3 inches and outside radius

5 inches, with a steel hoop whose thickness is 2 inches. It is

required to find the stresses produced when the original difference

between the outside radius of the tube and the inside radius of

the hoop is 0.004 inches. First, the sum of the two tangential

stresses at the surface of contact is (£e) 7^2=24 000 pounds per

square inch, if E is laken as 30 000 000 poimds per square inch.

Secondly, from the given radii, the value of a is found to be

43/24, and that of /? to be 41/12. Then formulas (154) give

T2= 8 260 pounds per square inch at the outside surface of the
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tube and T'2' = i5 740 pounds per square inch for the inside sur-

face of the hoop. Thus it is seen that the hoop tension is nearly-

double the compression on the outside surface of the tube. At

the bore -of the tube, however, the tangential compression is found

to be T\ = 14 400 poimds per square inch.

The decrease in the outside radius of the tube is next com-

puted and found to be £2=0.00138 inches, while the increase

in the inside radius of tlie hoop is £2' = 0.00262 inches. Hence

if the radius of the common surface of contact is to be exactly ^
inches after the shrinkage, the tube should be turned to an outside

radius of 5.0014 inches, and the hoop to an inside radius of 4.9974

inches. The radius of the bore, however, will then be less than

3 inches by the .quantity (Tiri/E) =0.00144 inches; hence if its

final diameter is to be exactly 6.0000 inches, it should be turned

to a diameter of 6.0029 inches.

The formula of Bimie has been used in solving the above

numerical example; if that of Clavarino is used, the following

values will be found : r2= 7 030, T2' = i6 970, Ti = 14 400 pounds

per square inch; e2= o.ooii7, e2' = o.oo283, and 61 = 0.00144

inches. The shrinkages thus agree within 0.0002, which is as

close as measurements can be relied upon.

The above investigation closely applies to the case of a hoop

or crank web shrunk upon a solid shaft or solid crank pin (Art. 97)

by making ri=o and lettitig ^2 be the mean radius of the web.

For example, let ri=o, ^2= 16 inches, rz= 24 inches, and let e/rz

be itVu in accordance with the old rule (Art. 32). Then a=\,

/?= 1X4.4, and the tangential compression at the outside surface

of the shaft or pin is ^2 = 3 740 pounds per square inch, while

the tangential tension at the surface of the hoop or web is

7^2' = 16 500 pounds per square inch; the radial compression in

the crank or pin is Ti = ii 300 poimds per square inch. It thus

appears that the ratio e/r2=T-BVir gives 'shrinkage stresses which

are higher than advisable when the other stresses which act upon

the web and pin are considered (Art. 98).

Prob. 154. A solid steel shaft, 6 inches in radius, is to be hooped

so that the greatest tensile stress in the hoop and the greatest com-



Art. 155 DESIGN OF HoOFED GuNS 399

pressive stress in the shaft shall be 15 000 pounds per square inch.

Find the thickness of the hoop and the radius to which its inside

surface should be turned.

Art. 155. Design of Hooped Guns

A hooped gim should be so constructed that neither the

stresses due to hoop shrinkage nor those developed during the

firing shall exceed the elastic limit of the material. The simple

case of a tube with one hoop can here only be considered. If

the radii are given, as also the inner pressure i?i due to the ex-

plosion, it may be desired to find the shrinkages so that this

requirement will be fulfilled. As i?i is very large, it is desirable

that the given dimensions should be such as to require the least

amount of material.

The condition of minimum amount of material will be in

general fulfilled when the stresses during the explosion are as

great as allowable and as nearly equal as possible. The diagram

in Fig. 155 represents the distribution of the internal stresses

under this supposition. O is the center of the gun, OA the

inside radius ri, while AB is the thickness of the tube and BC
that of the hoop. The shaded areas show the stresses due

to hoop shrinkage, Aa and Bb being the tangential compres-

sions Ti and T2 of the last article,
,
while Bb' is the tangential

tension T2', and Cc is the tangential tension at the outer sur-

face of the hoop. When the explosion occurs the two cylinders

are thrown into tangential tension, Aai and Bbi being those

at the inner surfaces of the tube and hoop. The above prin-

ciple indicates that both Aai and Bbi should be equal to the

maximum allowable imit-stress T^, which for guns is often taken

nearly as high as the elastic limit of the material.

In designing a hooped gun, the radius of the bore and the

thickness of the tube may be assumed, and it may be required

to find the thickness and shrinkage of the hoop so that the stresses

Aa, Aai, and Bbi in Fig. 155 are -each equal to the elastic limit

of the material. Or, given the radius of the bore and the out-
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side radius of the hoop, it may be required to find the interme-

diate radixis under the same conditions. These problems can

be solved, as well as more complex ones relating to guns with

several hoops. Guns with seven hoops have been built, but the

usual number is three or four.

Fig. 155

The formulas of Arts. 153 and 154 may be applied to the

design of a gun by assuming the allowable tangential unit-stresses,

as also the thicknesses of the tube and hoops. For a given unit-

pressure Ri due to the explosion, the shrinkages are then to

be computed. This method is one frequently used, and it will

here be illustrated for a gim with one hoop. Let ri=3.04, ^2=

5.80, and »'3=9.7S be the given radii, and let 50000 pounds per

square inch be. the allowable unit-stress for both tension and

compression. It is required to find the radii to which the sur-

faces shall be turned so that their values shall be those above

given when the gun is at rest. These radii will be readily found

when the tangential imit-stresses Ti and T2 for the tube and

T2 and T3 for the hoop have been computed, since these deter-

mine the changes in length of the radii. The first step is to

compute the numbers a and ^S, which are found to be 1.424 and

2.425 respectively. Since Ti is to be 50 000 pounds per square

inch compression for the inside surface of the tube, T2 for the

outer surface will be Ti{2ri^+ r2'^)/;ir2^= 2^800 pounds per

square inch compression, and accordingly for the common sur-

face of tube and hoop i?2= r2/a = i8 100 poimds per square

inch. For the inside surface of the hoop, r2=/?i?2=43 900

poimds per square inch tension. For the outside surface of the
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hoop where i23=o, formula (153) may be used by increasing

each of the subscripts by imity and making x=r3, thus giving

T3^2R2r2^/{r3^—r^) = ig8cx> poimds per square inch tension.

Then the change in the inside radius of the gim tube is {Ti/E)ri =

0.0051 inches, and hence the bore must be turned to a radius of

3.0400+0.0051=3.0451 inches in order that it may be exactly

3.04 inches after 'the hoop is shnmk on; the change in the out-

side radius is (T'2/£)>'2= 0.0050 inches, so that the outside sur-

face of the tube must be turned to a radius of 5.8004-0.0050=

5.8050 inches- The change in the inside radius of the hoop

is {T2/E)r2=o.oo8^ inches, so that its inner surface must- be

turned to a radius of 5.8000—0.0085 = 5.7915 inches; the change

in the outside radius of the hoop is (T'3/£)r3 =0.0064 inches,

so that its outside surface must be turned to a radius of

9.7500—0.0064=9.7436 inches.

This gun must now be investigated to find what powder

pressure will cause the stresses Ti and T2 to be 50 600 poimds

per square inch tension during the explosion. If T2 has this

value, the part of it due to the powder explosion is 50 000— 43 900=
6 100 pounds per square inch; hence the radial compression

between the tube and the hoop which is due to the explosion

must b^ i?2= 6 100/^3=2 500 pounds per square inch. The

value of Ti due to the explosion is 100 000 pounds per square

inch tension, since the initial compression of 50 000 pounds per

square inch must first be overcome. Inserting then in (153)'

the values T'i = iooocio, i?2=2 500, ri2= 9.242, r22= 33.640, and

solving for i?i gives i?i = 5i 100 poimds per square inch, which is

the highest allowable powder pressure. Under this pressure the

unit-stresses represented by Aa, Aai, and Bbi in Fig. 155 are

each 50 000 pounds per square inch, while aU other tangential

and radial stresses have smaller values.

In conclusion it may be noted that this chapter has been

prepared in order to present the general principles of the design

of guns, rather than to give the detailed methods which are

foUowed when three or more hoops are used. The work of

Meigs and IngersoU (Baltimore, 1885) and that of Story (Fort
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Monroe, 1894), each being entitled The Elastic Strength of

Guns, may be consulted for detailed discussions. The former

gives the methods and formulas for navy guns, while the' latter

gives those for army guns; these differ mainly in that the Navy

employs the formulas of Clavarino, while the Army uses those

of Bimie.

Prob. 155a. Prove that a gun tube with one hoop is most advan-

tageously designed when the common radius of tube and hoop is a

mean proportional between the other two radii.

Prob. 1556. Discuss a gun with two hoops where ''1=3. 50, ^2=9-15,

r3= ii.25, ^4= 12.25 inches and which is to be under a powder pressure

of 50 000 pounds per square inch. Find a set of shrinkages so that

the compressive stress at the bore when the gun is at rest shall be 45 000

poimds per square inch; and so that the tensile stresses at the bore

and at the inside of each hoop during the explosion shaU be 40000

poimds per square inch.
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Chapter XVII

ROLLERS, PLATES, SPHERES

Art. 156. Clyindeical Rollers

Let cylindrical rollers of diameter d and length I be placed

between twb flat plates and transfer a load from the upper to

the lower plate. Fig. 156a shows end and side views of the two

plates with one roller which carries the load W. It was found

in the experiments of Bach that the plate's were but little de-

formed in comparison with the roller, and hence the entire defor-
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S/E, where E is the modulus of elasticity (Art. 9) ; hence S/B
= cl\d. The sum of the vertical stresses in each cylindrical

segment must equal the total load W, since it holds that load

in equilibrium. Let x be the distance Bh; then the unit-stress

Sy acts over the area I8x, and hence the sum of all the~~ vertical

stresses Sy . ISx equals W. Accordingly,

S/E=:e/id and fSy.ldx=W

are two equations for determining the values of 5 and e.

To solve these ecpatioiis, Sy is to be replaced by its value

S . y/e and the second equation then becomes 5/ fydx = We.

Now / ySx is the area of the circular segment CACBC; but, since

the deformation is very slight, the arc CAC may be regarded as

parabolic or the area of the segment as ^CCXAB. Now AB=e
and \CC=BC = {ed-e'^)''= {ed)^ nearly. The solution of the two

equations then leads to the formula,

-(^1* « -f(l)* <-)

the first of which may be used for computing the unit-stress 5

when the load and the dimensions of the roller are given, while

the second may be used for deterjnining the size of a roller to

carry a given load under an assigned unit-stress.

Let w be the load per unit of length of the roller, or 'w=Wfl,

then the formula (156) may be written,

PF=fW5(25/£)* or w=^dS{2S/E)^ (156)'

which shows that the load on a cylindrical roller should vary

directly as its diameter. Taking 5 = 15000 and £=30000000

pounds per square inch for steel, the last formula reduces to

w = ^ii)d. This agrees well with the rule for bridge rollers given

in Cooper's Specifications of 1901, which is 2^ = 300^. The erro-

neous rule, w = i 200"^ d, which requires the load to vary as the

square root of the dianaeter, is still to be found in some bridge

specifications.
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As a numerical example, let it be required to find the factor of

safety of six wooden rollers used in moving a large block of stone

which weighs 12 000 pounds, the diameter of each roller being

6 inches and- its length 8 feet 4 inches. Here W = iXi2 000 =

2000 poimds, £ = 1500000 pounds per square inch, / = ioo

inches, and d = 6 inches; then formula (156) gives 5 = 266 pounds

per square inch, and hence the factor of safety is 8000/266 = 30,

which indicates a high degree of security. Again, let it be re-

quired to find the diameter of a cast-iron roller which is 6 feet

long in order to carry 30 000 pounds with a factor of safety of

18. Here TF = 3oooo pounds, 5 = 90000/18 = 5000 pounds per

square inch, £ = 15000000 pounds per square inch, and 1 = ^2

inches; then in the formula everything is known except d and

the solution gives d=^4..6 inches.

The assumption that the plates are not deformed at the sur-

face of contact with the roller is one that is not universally ac-

cepted. Later experiments by Juselius appear to indicate, for

rollers and plates of the same material, that the deformation of

the two plates in any vertical is about equal to that of"the same

vertical in the roller. By using this conclusion, as indicated in.

Fig. 156&, the above reasoning and formulas will be modified.

The shortening of the vertical radius will now yi one-half of itsr

foi-mer value, and thus the first formulas of Jp.56) and (156)'

become, -^^

5=(9TF2£/i6/2^)* W=^l^/E)^

Accordingly the compressive imit-stress dip' to a given load is

21 percent less than before, while the load'itnat may be carried

with a given unit-stress is 41 percent greater than before. Apply-

ing this second formula to the cast-iron roller of the last para-

graph, its diameter is found to be <^=3.4 inches. It is seen,

therefore, that the assumption used at the beginning of this

article errs on the side of safety when the plates are actually

deformed.

Prob. 156. A load of 192 000 pounds is carried on cylindrical steel

rollers 16 inches long and 3 inches diameter. Compute the number

of roUers needed when the allowable unit-stress is 12 000 pounds per

square inch, using the formula which appears to be most safe.
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Art. 157. Spherical Rollers

Let a sphere of diameter d be placed between two plates

and be subject to compression by a load W. The left-hand

diagram of Fig. 156a may represent a vertical section of the sphere

and plates, the former being regarded as alone deformed. The
vertical diameter AA is shortened to BB and any vertical line aa

is shortened to bb. Let 5 and Sy be the compressive unit-stresses

in the vertical lines AA and aa; let the greatest shortening AB
be called e, and the shortening ab be called y. Then, for stresses

within the elastic limit, S/Sy=e/y. The unit-stress 5 is the

greatest and it is required to find its value in terms of W and d.

As e/^d is the unit-change in length of the vertical radius, the

value of S may be expressed by S/E=e/^ (Art. 10) and this

is one equation between S and e. To find another equation,

the sum of the vertical stresses in the spherical segment must

equal the load W. Let x be the distance Bb; then the unit-

stress ^2, acts over the area 2;r:x; . dx, and hence the sum of all

the vertical stresses Sy . 2ffa;(?x equals W. Accordingly,

S/E=e/id 27zJSy.xdx=W

are two equations for determining the values of S and e.

To solve these equations, Sy is to be replaced by its value

S.y/e and the second equation then becomes S J2nyxdx=We.

Now 1 2nyx8x is the volume of the spherical segment whose

section is CACBC in the figure; but, since the deformation is

very slight, the arc CAC may be regarded as parabohc, and then

the volume is one-half that of a cyhnder having the radius BC
and the altitude AB. Now AB=e, and BC={ed-e^)'' = {ed)\

very nearly, since e is small compared with d. Accordingly the

value of the integral is ^neH, and then ^nSed=W. Inserting

in this the value of e from the first equation, it reduces to,

S^^WE/\nd? or W=\izd:^S^/E (157)

From the fi^rst formula 5 may be computed when W is given,

and from the second W may be computed w^ien 5 is given. The

diameter required for a sphere to carry a given load with an allow-
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able unit-stress is found from d^= i^EI-KS'^\ thus diameters of

spherical rollers should vary as the square roots of their loads.

In strictness there is always some deformation of the plates

as well as of the spheres, and the old assumption that the total

deformation is equally divided is probably nearer the truth than

that it is aU confined-to the sphere. Under this assumption AB
is to be taken as \e and then the formulas become,

S'=WEI\%^, W=ind^S^/E, d^=2WE/7tS2- (157)'

Comparing these with the previous formulas it is seen that (157)

give values of S which are 41 percent higher than (157)', values

of W which are only one-half as large, and values of d which are

41 percent larger. The common formulas (157) hence err on

the side of safety, and the truth probably hes between them and

(157)'. When the plates are harder than the rollers, (157) is

more nearly correct; when they are of equal hardness, perhaps

(157)' gives the more accurate results.

These forniulas, like those of the last articles, are valid only

when the load produces a unit-stress S which is less than the

elastic limit of the material. For stresses beyond the elastic

limit, the formulas W=Cild for cyhnders and W=C2d^ may-

be considered as approximate, in which Ci and C2 are to be

determined by experiment for each material. The experiments

of CrandaU and Marston on steel cyHndrical rollers, which ranged

in diameter frorp i inch to 16 inches, show that their crushing

loads are closely given by the formula W=88old, where PF is in

pounds and / and d in inches.

Prob. 157. How many steel spheres are required to carry a load

of 6 000 pounds, with a working stress of 15 000 poimds per square

inch, when they are 4 inches in diameter? How many are required

when they are 12 inches in diameter?

<

Art. 158. Contact of Concentrated Loads

When a concentrated load is placed upon a horizontal beam or

plate, it produces compressive stresses over a certain area. In

bridges and buildings concentrated loads are often applied to
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the upper surface of a beam by means of another beam at right

angles to it; in this case the surface of contact is plane and the

concentrated load W may be regarded as uniformly distributed

over the area. This subject has already been mentioned in Art.

142, and it is there indicated that, for simple beams, the flexural

compressive stregs and the direct compressive stress due to the

concentrated load combine to produce a true compressive stress

which is smaller than either of them. When the concentrated

load rests upon the lower flange of a simple I beam, as sometimes

occurs in practice, the combination of the direct compression

•with the flexural tension produces a true compression and a true

tension which are larger than the apparent ones. It is hence

always preferable to support the concentrated load on the com-

pressive side of a beam.

The two preceding articles contain examples of the contact

of cyhnders and spheres with plane surfaces, and from the

reasoning there given a relation may be deduced between the

area of contact and the load W. For the cyUnder the area of

contact is the width 2(ed)^ multiplied by the length I; inserting

the value of e, this area is a=2ld{S/2E)^, and replacing 5 by

its value in terms of W, it becomes a^{ld)^{:^W/.E)^. The
a,rea of contact hence varies as the cube root of the load for the

same cyhndrical roller; thus if a load Wi gives an area of contact

ffli, a load 2>Wi is required in order to make the area 2ai. This

conclusion is valid only when the elastic Hmit of the material is

not exceeded. The formula here deduced for a is for the case

where the plate is not deformed; when the deformation is equally

divided between the plate and the roller, 3P7 is to be replaced

by 6W, and the law connecting o and W remains unaltered.

For the case of a sphere resting on a plane. Art. 157 shows
that the area of contact is ned; placing in this tiie value of e in

terms of S, and then that of S in terms of W, there is found
a=d{TzW/E)^, which shows that the area of contact varies as

the diameter of the sphere and with the square root of the load.

To double the area of contact, it is hence necessary to quad-
ruple the load upon a sphere; this law holds whether the sphere
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alone be defoimed or whether the deformation is divided between

the sphere and plate. The above law does not agree with the

conclusions derived from the experiments made by J. B. Johnson

on the contact between car-wheels and railroad rails (Art. 142).

This disagreement is probably mostly due to the fact that the

upper surface of the rail is not a plane, and in part to the fact

that the unit-stresses were very high.

Prob. 158. Compute the total area of contact for the cylindrical

roUers of Problem 156. If the same load is carried on spherical steel

rollers 3 inches in diameter, compute the total area of contact.

Art. 159. Circular Plates with Uniform Load

Let a circular plate of radius r and uniform thickness i be

subject on one side to a pressure R on each square imit of area,

and be supported or fixed aroimd the circumference. The head

of a cylinder under the pressure of water or steam is a circular

plate in such a condition. Under the action of the load, the

plate bends, the side in contact with the load being subject to

compression while the other side is under tension; the maximum
stress caused by the flexure will evidently occur at the middle,

and this is required to be determined.

As the simplest case let the plate be merely supported around

the circumference. The total load on the plate being nr^R,

the total reaction of the support is also

nr^R, or the reaction per linear unit is \rR.

Now let a strip having the small width h

be imagined to be cut out of the plate, so

that its central line coincides with a diame-

ter. The reaction at each end of this strip
1 1 1 1 1 1 1 1 1 1 1 1

1

\%h.\rR and the load on the strip is h . 2rR.
]

\

The sum of the two reactions being only ^ W
one-half the load, an upward shearing force

equal to hrR must act along the sides of

the strip to maintain the equihbrium. At the center of the circle

there can be no shearing stress, and the most probable assump-

tion regarding its distribution on the sides of the strip is to take
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it as constant from the center to the circumference so that it acts,

like an upward uniform load.

The strip of breadth b, depth d, and length 2r is thus a simple

beam acted upon by two vertical reactions, each equal to ^brR, £u

downward uniform load 2brR, and two vertical shears on the

sides, each equal to ^brR. The bending moment at the middle

of this imaginary beam hence is,

M=ibrR . r+ibrR . Ir-hrR . ir=\hr^R

and the maximiun unit-stress on the upper or lower fiber at

the middle of the strip is, from the flexure formula (41),

5=Mc//=6M/M2= 3^. ^2/^2

This value of S is not the real horizontal unit-stress at the center

of the circle, but only the apparent stress due to considering the

elementary strip. At the center the horizontal unit-stresses are

acting in all directions. If a second strip is passed in Fig. 159

at right angles to the first, a unit-stress S equal in value but normal

in direction to the first will be found. The true horizontal imit-

stress T will be determined from the principle of Art. 139, taking

into account the factor of lateral contraction X; on the upper

side of the plate T=S— )S—XR, and on the lower side of the

plate r=5— A5. The latter value is the one to be used, since

it is larger than the former. Accordingly,"

T=i(j.-X)R.{r/df and {d/rf=i(i-k)R/T

are the general formulas for the discussion of circular plates

supported aroimd the circumference and subject to a imiform

load nr^R.

For cast iron the mean value of the factor of lateral contrac-

tion X is \, while for wrought iron and steel it is \. Hence,

T=^{r/dfR and T={r/d)^R (159>

are the practical formulas for use, the first applying to cast iron

and the second to wrought iron and steel circular plates when

supported at the circumference, T being the allowable unit-stress

in tension. The unit-pressure R that a circular plate can carry-

varies directly as the square of its thickness and inversely as the

square of its diameter.
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The more conunon case of a circular plate fixed around its

circumference cannot be solved without a discussion of the elastic

curve into which a diameter deflects. The investigation is too

lengthy to be given here, but it can be said that the true effective

unit-stress is about two-thirds of that for the supported plate.

Hence
T=l{r/dfR and T=i(r/d)R (159)'

are formulas for fixed plates, the first being for cast iron and the

second for wrought iron and steel.

From the above formulas the proper thickness d for circular

plates under uniform pressure may be readily computed. For

example, let a fixed cast-iron cylinder head of 36 inches diameter

be required to carry a uniform pressure R of 250 pounds per

square inch, with an allowable tensile stress T of 3 600 pounds

per square inch ; then d= r(;^R/4T)^= 4.1 inches. The thickness

of a steel cylinder head for the same diameter and pressure, for

a tensile stress of 12 000 pounds per square inch, will be

d=r{2R/^T)^=2.i inches.

Prob. 159a. When the total load W for a circular plate is given,

show that the thickness of the plate should be the same whatever be the

diameter.

Prob. 1596. If a plate 36 inches in diameter and 2 inches thick

can safely carry a pressure of 250 pounds per square inch, what i^ the

safe pressure for a plate 24 inches in diameter and i inch thick ?

Art. 160. Circular Plates with Concentrated Load

When a circular plate is under flexure from a concentrated

load at the middle, it is more highly stressed than when the same

load is uniformly distributed, as is evident from the theory of

beams. The simplest case is where the plat« is merely supported

along its circumference and where the load P is uniformly dis-

tributed over a circle of radius fo, the radius of the plate being r

and its thickness d. Let x be any radius less than Tq; the load

on the circle of radius x is uniformly distributed, the load per

square unit being P/Trrg^, which may be called R. The load on

the circle of radius x is kx^R, which acts along the section of
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circumference 27ix and depth d, so that the shear per linear unit

along this circumference is —nx^Rjinx or —\Rx, and the shear

for any distance h along this circumference is F= —^bRx. - Since

the shear V and bending moment M for any section are connected

by the relation dM/dx= V, it follows that

M=-ibRx^+C or M=^R(r(?-x2^)+Mi

where the constant of integration is determined by the conditiqji

thatM becomes M^, the moment for the circumference aTr^o, when
X is equal to ro.

To find the value of Mi, let z be any radius greater than Tq

and less than r. The total shear along the circumference 2kz

is —P, the shear per linear unit is — P/27rz, and the shear for

a distance & is F= —Phjinz. The bending moment M' is then

found by the same relation as before to be

M'=-— log 0+C or M'=— log -

where the constant of integration is determined by the condition

that M''.= owhen z= r. Malcing z= yo, the value oflfi now is

{Pb/2n) log r/ro. Inserting this in the above expression for

M, replacing R by its value P/izro, and making x=o, there results

lf=— -+log

as the apparent bending moment for the middle of a strip of

breadth h, depth d, and length 2r. The apparent flexural unit-

stress on the upper or lower side of the middle of this strip is now
found to be

5= 6M
bd? nd^

JlL
0--r.)-

If a second strip be passed at right angles to the first, the same
unit-stress S will be found acting normally to the other. The true

horizontal unit-stress T on the lower side of the plate then is

T=S—XS, where A is the factor of lateral contraction. Hence

r=(x-A)(i-^3logl)^^, (160)
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is the general formula for the discussion of supported circular

plates under concentrated loads at the middle, A being J for

cast iron and J for wrought iron and steel.

When the load is uniformly distributed over the entire plate,

ro equals r, P is tzt^R, and the formula becomes T=^{i—k)r^/cP,

which is the same as deduced by another method in the last

article. When ro = o the load is concentrated at a mathematical

point and T becomes infinite. The formula can also be written

r=(i-A)(^+3logl)i?| (160)'

in which R is the unit-pressure on the area tzyq^ ; in cases of design

the allowable imit-pressure R should not be allowed to exceed the

elastic limit of the material.

As an example, let a load of 5 000 pounds be at the middle

of a steel plate, distributed over a circle i inch in diameter,

thfe plate being i inch thick and 48 inches in diameter. Here

A = i) ''0 = 1 inch, r=24 inches, and i?= 6.360 pounds per square

inch; using a table of Naperian logarithms, log 48 is found to be

3.871 and then formula (160)' gives T' = i3 9oo pounds per

square inch, which is not too high a value for a steady load.

When a plate is fixed around its circumference it is probable

that the constants in the above formulas for T should be i instead

of f and 2 instead of 3. Fixing the circumference increases the

strength of the plate, for the same reason that the strength of a

beam, is increased by fixing its ends, and a fixed plate can carry

a load about fifty percent greater than that carried by a sup-

ported one. When a plate is stiffened by ribs, as is frequently

the case in. cast iron, about one-half of the material of the ribs may
be, regarded as adding to the thickness of the plate.

Prob. 160a. Which is the stronger, a circular plate carrying a

load P uniformly distributed, or one carrying a load ^P distributed

over an area at the middle which is one-fourth of the area of the plate ?

Prob. 1606. Show that the formula for the discussion of a circular

steel plate, fixed around its circumference and loaded at the middle, is

r=i.48 P/d? when r/ro— 20, and T=i.'j?> P/dJ^ when r/ro=/^o.
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Art. 161. Elliptical Plates

Elliptical plates, are commonly used for the covers of man-

holes in boilers and stand-pipes. Let R be the uniform unit-

pressure on the plate, a the semi-major axis, and b the semi-minor

axis of the ellipse. It is required to find

the maximum unit-stress T on the tensile

side of the plate.

Taking the case where the plate is

simply supported around the circumfer-
'^'

enc6, let two elementary strips be drawn

as in Fig. 161, one along the major axis and the other along the

minor axis. Let Wi and W2 be the loads on these strips, and

fi and /2 their deflections. At the center of the ellipse the deflec-

tions of the strips are, from Art. 55,

/i

=

Wia^/^EI /a

=

Wiby^EI

and because these are equal, Wia^ must be equal to TFa^^. Since

the reactions at the ends are proportional to the loads, it follows

that the reactions at the ends of the axes are inversely as the

cubes of the lengths of the axes. Hence the total weight nabR

is not imiformly distributed on the support around the circum-

ference, but the greatest reaction per hnear unit will be found

at the ends of the minor axis and the least at the ends of the

major axis. It should hence be expected that the horizontal

fiexural stresses at the center are the greatest in directions parallel

to the minor axis, and that in case of rupture a crack would

begin at the center and run along the major axis ; this is verified

by tests.

The theoretic solution of this very difl&cult problem cannot
' well be given here. From the discussion of Grashof and the

experiments of Bach the following approximate formula may be

written for wrought-iron and steel elliptical plates supported

around the circumference:

T=2RaW/{a^+ h^)cP . (161)

in which a and b are the semi-axes, d the thickness of the plate,

R the unit-pressure upon it, and T the allowable tensile imit-
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stress. When a and h are equal, the ellipse becomes a circle of

radius r, and T = R{r/dy as found in Art. 159.

For a cast-iron plate supported along its circumference, the

numerical coefficient in the above formula will be f instead of 2.

For plates fixed around the circumference, the coefficient will

be about | for wrought iron and steel, and about i^ for cast iron.

These numbers are derived by taking the factor of lateral contrac-

tion as J for wrought iron and steel, and as \ for cast iron. In

Germany the value A=i^ is generally used for both cast iron

and steel, and this will slightly modify the above numerical

coefficients.

A common proportion for manhole covers is to make a/6 = 1.5, ,

that is, the length is 50 percent greater than the width. Let

the length be 24 inches and the width 16 inches, and let it be

required to find the proper thickness when the cast-iron manhole

cover is used in a stand-pipe under a head of water of 50 feet.

Here a= 12 and &=8 inches, R = 22 pounds per square inch,

while the allowable T for cast iron may be taken as 3 000 poui^ds

per square inch. Then, since the plate is supported around

the circumference, the numerical coefficient in the formula will

te I, and from it is found d=ab{\R/{a?+ l^)T)''^oM inches,

so that a thickness of | inches will be sufficient safely to with-

stand the pressure.

Prob. 161a. Show that the allowable unit-pressure R for a cast-

iron elliptical manhole cover having the proportions 0/6=1.5, 's

^iven by R=t.g2{d/b{fT, in which hi is the width of the plate.

Prob. 1616. Compute the safe unit-pressure for a cast-iron man-
hole cover of 20 inches length, 13 inches width, and ij inches thick-

ness. What head of water will produce this pressure?

Art. 162. Rectangular Plates

A rectangular plate of length 2I and widths 2W, subject to a

uniform pressure R per square unit, distributes that pressure

over the support in a similar manner to the elHptical plate. The
reaction per linear imit is less on the ends than on the sides,

'
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and is greater at the middle of the ends and sides than near the

comers. Rupture tends to occur near the center and parallel

to the longer side. The approximate formula derived from the

discussion of Bach for iron and steel plates is,

T=aRPm?/{l^+m?)d^ (162)

in which T is the maximum tensile imit-stress at the middle of the

lower side of the plate, and d is the thickness of the plate. The

values of the number a, as determined by the experiments of

Bach, ranged from |^ to |, according as the condition of the edges

approached that of a mere support or a state of fixedness.

For a square plate / and m are equal, and the above expression

' may then be reduced to the forms,

T=\R{l/df and T=iR(l/d)^

the first being for free and the second for fixed edges. The
numerical constants in these formulas are derived from the dis-

cussion of experiments and hence stand upon a different basis

from those deduced for circular plates; probably the formulas

will apply better to cases of rupture than to cases where T is

within the elastic Umit of the material.

This problem has been discussed theoretically by Grashof with

the conclusion that the formula for a square plate fixed at the

middle of each edge is T = {i — X^)R{l/d}^, where A is the factor

of lateral contraction. A plate might be fixed in this manner

by a bolt at the middle of each edge, but such an arrangement

is unusual, the common method being to bolt it to the support

at many points. When A =^, this formula reduces to T =^R(l/d)^,

which is intermediate between those given for free and for fixed

edges in the last paragraph.

While the numerical coefficients for square plates, as deduced

by different authors, vary somewhat, it is well estabhshed that

the unit-stress T at the middle of the plate varies directly as its

area and the unit-pressure R, and inversely as the square of its

thickness. The strength of a square plate, as measured by the

pressure R that it can carry, varies directly as the square of the
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thickness and inversely as the area ; this law is the same as that

previously found for circular plates.

Prob. 162. Prove that the maximum unit-stress for a square plate,

caused by a given uniform load W, is independent of the size of the

plate.

Art. 163. Hollow Spheres

Hollow spheres are used in certain forms of boilers under

inside steam-pressure. The ends of steam and water cylinders

are sometimes made hemispherical instead of plane, in order

to avoid flexure; the base of a steel water tank is often made a

hemisphere for the same reason. If the thickness of the sphere

is small compared to its radius, the investigation is simple. Let

r be the radius and t the thickness. Let R be the inside pressure

per square unit, and 5 the tensile unit-stress on the annulus.

Then on any great circle the total pressure is nr^R, and this is

resisted by the tension 27:rtS in the section of the annulus. By
equating these, there is found,

2tS=rR or S=^R.r/t

which is the formula generally used for thin spheres under inner

pressure. But in strictness 5 is the apparent stress, while another

equal in intensity acts at right angles to it. Thus from Art. 139

the true stress on the outside surface is T—S—XS, while that

on the inside surface is T=S—^+XR. Using \ for the value of

X, and inserting the above value of S, there result,

Ti=\R. r/t and T2=^R+\R . r/t

for the true tensile unit-stresses on the outside and inside surfaces

respectively. Both of these are less than 5, and hence the usual

formula for thin spheres (Art. 31) errs on the side of safety.

The investigation of a thick hollow sphere under inside and
outside pressure will be similar to that of the thick cyhnder in

Art. 149. Let ri be the inside and ^2 the outside radius, R\ and

i?2 being the corresponding pressures per square unit of. surface.

Fig. 1496 may represent a partial section of the sphere, x being

the radius of any elementary annulus where the radial imit-stress
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is R and the tangential unit-stress is 5. From the symmetry

of the sphere it is seen that another stress 5 acts at right angles

to the one shown in the figure. Thus an elementary particle

at any position in the annulus is held in equihbrium by three

principal stresses R, S, and 5. The sum of these is regarded

as constant throughout the annulus (Art. 183), and accordingly

2S+R=^Ci is one equation between S and R, where Ci is a

constant which is to be determined.

Now the inside pressure on a great circle whose radius is x
is Tix^R, and the outside pressure on a great circle whose radius

is x+ dx is n{x+ dx)^(R+ dR), both of these being perpendicular

to the plane of the circle. The difference of these is equal to

the resisting stress in the elementary annulus, which is anxdx . S.

Stating this equation and omitting quantities of the second order,

a second relation between S and R is found. Accordingly,

2S+R=3Ci xdR+2Rdx=^2Sdx

are the two conditions for determining S and R. Substituting

in the second equation the value of 5 from the first and inte-

grating, the value of R in terms of x is found, and then that of

R is known; thus,

5=Ci+ C2/a^ and R=Ci-2C2/x^ (163)

in which C2 is a constant of the integration. These formulas

for hollow spheres is seen to be analogous to those for thick

cyUnders, the radii being cubed instead of squared. The formula

for 5 is the most important one and S has its greatest value at

the inside surface of the hollow sphere.

Values of the constants Ci and C2 may be found from the

formula for R. Regarding the unit-pressures i?i and i?2 as

without sign, R becomes —Ri when x=ri and R becomes —R2
when x=r2; then,

Ci = in^Ri-r2^R2)(/{r2^-ri^) C2=Wr2\Ri -R2)/(r2^-ri^)

and these when placed in (163) give the formulas deduced by

Lam6 for thick hollow spheres. The most common case is that

where there is no outside pressure R2; here the tensile unit-
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stresses on the inside and outside surfaces are,

Si=Ri{W+ri^)/{r2^-ri^) S2=Ri .^nyiri-r^^) (163)'

and the first of these gives the greater unit-stress. For example,

if r2 = 2ri, then Si=^Ri, and when rg is nearly as large as ri,

then, Si is nearly \R . r/t, as previously found for a thin hollow

sphere in Art. 31.

The above gives the apparent unit-stresses. To find the

true unit-stress Ti at the inside surface of a steel hollow sphere,

the factor of lateral contraction is to be taken as J, and then by

Art. 139,

ri=5i-i5i-Fj7?i=4i2i(2^23+ri3)/(r23-ri3) (163)"

which will generally be found to be less than Si. It is therefore

on the safe side to use the formula for ^i in cases pf design.

As an example, let a steel cyUnder 4 inches in inside and

8 inches in outside radius have a hemispherical end with the same

radii, and be subject to an inside water pressure of 4 000 pounds

per square inch. Then the apparent tensile stress on the inside

surface of the hemisphere is found from (163)' to be 2 860 pounds

per square inch, while (163)" gives the true tensile stress as

3 240 poimds per square inch; hence the true stress is about

13 percent larger than the apparent. For the cyhnder itself,

the apparent and true tensile stresses at the inside surface may

Tae computed from (150) and (152)" and these values are Si =6 700

and 71=7600 pounds per square inch, so that the true stress

is 13 percent greater than the apparent for the cyhnder.

If the end of this cylinder is a flat plate of the same thickness

as the cylinder, or 4 inches, and fixed around the circumference,

the true stress on the outer side is found from (159)' to be

7' =^|X4 000 = 16 coo pounds per square inch; this is five times

as great as that for the hemisphere, and more than double the

greatest stress in the cylinder. The advantage of hemispherical

ends in reducing the stresses is thus seen to be very great. It may

be remarked, in conclusion, that the theory of internal stress in

cylinders and spheres is not perfect, for it fails to give the same
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results for the common surface of junction of a cylinder and

hemisphere. This indicates that the assumption made regarding

the constancy of 25+72 does not probably hold good for a hemi-

sphere attached to a cylinder.

Prob. 163a. A hollow sphere is to be subject to a steam-pressure of

6oo pounds per square inch, its inner radius being 8 inches. Compute

its thickness, so that the greatest tensile stress may be i ooo pounds

per square inch.

Prob. 1636. Investigate the discrepancy between the formulas for

hollow cylinders and hollow spheres for the following numerical case.

A hollow cylinder with hollow hemispherical ends, the insiQe diameters

being 8 inches and the outside diameters 12 inches, is subject to an

inside water pressure of 2 400 pounds per square inch. Compute, by

Art. 152, and by this article, the true maximum unit-stress T for the

common plane of jlmction of cylinder and hemisphere.

wrv^vrr
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Chapter XVIII

MISCELLANEOUS DISCUSSIONS

Art. 164. Centrifugal Tension

When the center of gravity of a body of weight P revolves

around an axis with the uniform velocity v\ and r is the distance

of the center of gravity from the axis, there is generated a stress

in the cord or bar that connects the body with the axis. This

centrifugal force Q is shown in works on theoretical mechanics

to be Q=P'v^/gr, where g is the acceleration of a body falling

vertically imder the action of gravity near the surface of the earth.

The case shown in Fig. 164a is that of a bar of uniform section

area and length I, the weight P being attached to one end while

it revolves around an axis A at the other end. It is required

to find the centrifugal stress in the bar at A when the speed of

n revolutions per second is maintained.

-/-

Fig. 164o

Let r be any distance from the axis; the velocity at this dis-

tance is 2nrn, or if w is the angular velocity, the velocity v at

the distance r is ro), and the relation between n and co is given

by w=2nn. Now let W be the weight of the bar, \l the distance

of its center of gravity from the axis, and t'i the velocity of that

center of gravity ; then,

gives the centrifugal force at the axis ; this produces a tension in

the bar and a sidewise compression and flexuie on the axis.

As an example, let a bar of wrought iron 2X2 inches and

6 feet iong have a weight of 400 pounds with its center of gravity
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6^ feet from the axis of revolution. It is required to find the

number of revolutions per second in order to produce rupture.

Solving the last equation for co, and placing Q = 50 000 pounds

per square inch, P=400 pounds, W =80 pounds, ^ = 32.16 feet

per second per second, 1=6 feet, and r=6j feet, there is found

^=48.4 radians per second, and hence the speed required to

cause rupture is « =48.4/27^ = 7.8 revolutions per second.

When P=o in the above formula, the case is that of a bar

of uniform section area and of weight W, and the tensile stress

at the axis is Q=^Wloj^/g. The tensile stress in such a bar

is o at the free end and it increases toward the axis, where it has

the value Q. Let a be the area of the cross-section, w the weight

of a unit of volume, and x any distance from the axis. Then the

weight of the length l—x is wa{l—x) and the distance of its

center of gravity from the axis is ^{l-\-x), so that the centrifugal

force of this part of the bar is,

Q'=wa{l—x) . i{l+x)oJ^/g=wauP(P—x^)/2g

and this is the tensile stress at the distance x from the axis. When
x=l, then Q' =0; when ;x:=o, then Q' =wdP'u?/2g, which is equal

to the above value of Q. The tensile unit-stress in the bar at

any distance x from the axis is R=Q'/a. This may be written

R = ^(waP/g){P—x^) and it will be seen to be closely analogous

with the expression for radial unit-stress in a revolving fly-wheel

or millstone.

Another case is that of the thin circular hoop of mean radius

r and thickness i, shown in the first diagram of Fig. 164&. Let

W be its weight, which is equal

to 2-K'whrt, if w is the weight of

the material per cubic unit, and
i is the width of the hoop per-

pendicular to the plane of the

drawing. The centrifugal force

acting on the axis is here zero

because the center of gravity of the hoop coincides with the axis.

There is hence no pressure on the axis, but the centrifugal force

acts radially upon the hoop and produces tension in it in the
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same manner as inside water pressure in a thin pipe. The
centrifugal force due to an angular velocity w is 2nwbrHaP/g for

the entire weight, and hence the radial unit-pressure R is found

by dividing this by the area 2Kbr, ox R=wrt(i?/g. Now, refer-

ring to Art. 30, it is seen that rR=tS is the relation between

the inside unit-pressure R and the tangential tensile unit-stress

5 in the hoop. Therefore the value of S is,

S= {wa?/g)r^ (x)—2iin

in which n is the number of revolutions per second. For ex-

ample, let it be required to find the tensile stress in a cast-iron

hoop, 4 inches wide, 2 inches thick, and 62 inches in outside

diameter when making 300 revolutions per minute. Here

^=450/1 728 pounds per cubic inch, ^= 30 inches, « = 5 revo-

lutions per second, and ^=32.16X12 inches per second per

second; then S is found to be 600 pounds per square inch, which

is a low value for cast iron in tension.

The above formula is frequently applied to the rim of a fly-

wheel, taking r as the mean radius, but it will now be shown

that it gives the correct tangential unit-stress when r is the radius,

of the outside circiunference. Let r\ and r2 be the radii of the

inside and outside circumferences of the rim, and let x be any

intermediate radius. The above reasoning shows that the out-

ward radial unit-stress due to the matter in an annulus of thick-

ness bx is {wu)^/g)xdx and this may be called dR, it" being the

increment of the radial tensile unit-stress R. Referring to the

~ reasoning in Art. 149, it is seen that the two equations,

S+R=2C x.dR+R.dx=S .dx

are applicable to this case. Inserting the above expression, for

dR and solving for S and R, there are found,

S=C+i{wa?/g)x^ R=C-l(w(^/g)x^

Now when x=r2, then i?=o, since there is no radial stress on

the outside circumference; hence C=^(w(iP/g)r2^, and hence,

S= h{wo?lg){ri^-y?) R= i(wwV^) (r-/-xP)

are the tangential and radial unit-stresses at any distance x

from the axis, both of these being tension. Hence 5 is the greatest
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at the farthest distance from the axis, and,

5i= iiwcoVg) {r2^+n^) 52= {wa^/g)ri

are the tangential unit-stresses at the inside and outside circum-

ferences of the rim. It is seen that ^2 is independent of ri and

and that it is the greatest tangential unit-stress.

For a solid grindstone or millstone, ri is o and the greatest

unit-stress ^2 is the same as for a thin hoop of outside radius

^2, while Si at the center is ^82- Thfese, like all of the foregoing

values, are apparent stresses. The true stresses corresponding

to the actual deformations (Art. 139) differ from the apparent

ones at all points except tangentially on the outside circum-

ference. Let A be the factor of lateral contraction; then for

any distance x from the axis, T=S—XR for the tangential

unit-stress and T'=R— XS for the radial unit-stress. For the

outside circimiference of the rim, where x=r2,

T2= {wa?/gW T2'= - {wa?/g)Xri

and for the inside circumference of the rim, where x=ri,

Ti= i{waP/g) {ri-iri+ n^+W)
Ti'= iiwoJ^/g){ri-hi-r^-Xr^)

The values of T2 and T2 are independent of fi, that of Tx de-

creases as r\ decreases, while that of T^ increases as r\ decreases.

The greatest tangential stress is at the outside circumference,

and here it is that rupture begins by one or more radial cracks.

Prob. 164a. A cast-iron bar is 3X2 inches in section, and 9 feet

iong. Through the middle and normal to the flat side is a hole f
inches in diameter. If the bar is revolved around an axis through

this hole, how many revolutions per second will produce rupture?

Prob. 1646. A solid steel circular saw is 4 feet in diameter and

makes 2700 revolutions per minute. Compute the true tangential

unit-stresses at the circumference and at the center. How many revo-

lutions per minute will cause a tangential stress of 35 000 pounds .per

square inch?

Prob. 164c. For influence of the spokes of a fly-wheel see Trans-

actions American Society Mechanical Engineers, Vol. 20, p. 209.
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Art. 165. Centrifugal Flexure

The rod that connects the cross-head of a steam engine with

the crank pin is subject to a centrifugal flexural stress owing

to the fact that one end revolves in a circle. The horizontal

rod, or parallel bar, joining two driving wheels of a locomotive

is another instance of centrifugal flexure; this is simpler than

the coimecting rod,' because all points are revolving with the

same velocity, and hence it will be discussed first.

Let u be the velocity of a locomotive and v the velocity of

revolution of the end of the parallel rod around the axle of the

driving wheel to which it is attached. Let ri be the radius of

the wheel, and r the radius of the circle of revolution of the end

of the parallel rod. Then since the velocity of revolution of the

circumference of the wheel

is the same as the linear

velocity of the locomotive,

it follows that v=u . r/n.

Now not only the end of the

parallel rod, but every point B

in it, is revolving with the ^'S- 165a

velocity t; in a circle of radius r. Thus a centrifugal force is

generated which produces flexural stresses. When the rod is at

its lowest position BB, this centrifugal force acts as a downward

uniform load producing flexure; at the highest position AA it acts

as an upward uniform load producing flexure; at the position

CC, on the same level as the axles, it produces a compressive

stress in the direction of the length of the rod.

Let w be the weight of the parallel rod per Unear unit; then,

from rational mechanics, the centrifugal force is,

ii/=wv^/gr or iv'=wu^r/gri^

which may be called the centrifugal load per unit of length.

The rod being a beam supported at its ends, having a length /,

a breadth b, and a depth d, the maximum unit-stress due to

this uniform load is, from the flexure formula (41),

S=Mc/I=5w'P/4bcP
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which is the flexural stress due to centrifugal force when the

bar is at its highest or at its lowest position. If the bar is not

rectangular, as is generally the case, the values, of c and / for its.

cross-section are to be obtained by the methods which are ex-

plained in Arts. 42 and 43.

In this formula g is the acceleration of gravity, or 32.16 feet

per second per second. In using it in formulas, - however, all

quantities should be expressed in terms of the same linear unit,

the inch being preferable. For example, let a locomotive be

running at 60 miles per hour, the radius of the drivers being

3 feet and that of the parallel rod i foot, this being of steel, 4 Inches

deep, 2 inches thick, and 8 feet long. Here m =88 feet per second

= 12X88 inches per second, ^ = 32.16X12 inches per second

per second, ri =3X12 inches, r= iXi2 inches, /=8Xi2 inches,'

& = 2 inches, d=\ inches, and 2e/ = 2.27 pounds per Hnear inch.

The centrifugal load per inch then is to'=6i pounds, and the

maximum flexural stress is 5 = 13 200 pounds per square inch,

which is probably not sufficiently low when it is considered that

the parallel rod is subject to rapid alternating stresses and per-

haps to shocks.

The connecting rod moves in a circle of radius r at the crank

pin, while the other end moves only in a straight line. Thus

at the end A there is no centrifugal load, while at B the cen-

trifugal load is the same as given by the above expression for

uf . When the rod is in the

position shown in Fig. 1656, it is

a beam acted upon by a cen-

trifugal load which varies uni-

formly from o at .4 to inf at B.

The total load is hence \'ufl, the

reaction at A is ^mfl, and that at

B is ^vfl. The bending moment for any section distant x from

the end A then is,

and the maximum value of M occurs at the section for which.

s<^/P=^, which gives maximum M=o.o6^8w'P- Then from
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the flexure fomiula (41), the flexural unit-stress is,

S=Mc/I S=o.sS3w'P/bd^

the second being for a rectangular section in which «/ has the

same value as for the parallel rod.

By comparing the formulas for rectangular parallel and

connecting parallel rods it is seen that the unit-stress S for the

former is about twice as great, if the length and section area are

the same in the two cases. The parallel rod needs the greatest

cross-section at the middle, while the connecting-rod needs the

greatest cross-section at about o.6l from the cross-head.

Prob. 165. The connecting rod of an engine is 2 feet long and it

is attached to a crank pin at a distance of 6 inches from the axis of

a fly-wheel. If the wheel makes 750 revolutions per minute, find a

square cross-section for the connecting rod so that the centrifugal unit-

stress S may be 4200 pounds per square inch.

Art. 166. Unsymmetric Loads on Beams

It was explained in Art. 43 that two axes may be drawn in

the plane of any section area of a beam, these passing through

the center of gravity of the section and being at right angles to

each other, so that the moment of inertia of the section is greater

for one axis and less for the second axis than for any other axis

through the center of gravity. These are called ' principal axes ',

and the moments of inertia with respect to them are those required

in all common cases; Table 6 gives these moments of inertia

for I sections and Table 8 those for T sections. The great

majority of beam sections are symmetric with respect to both

of the principal axes, while a few Hke the T and bulb sections

are symmetric with respect to one principal axis only. The

L section of Fig. 42c and the Z section of Fig. 4:2d are unsymmetric

with respect to both principal axes ; these are not commonly used

as beams, but when so used, the flexure fomiula (41) cannot

be applied to their correct discussion without the determination

of the moments of inertia for the principal axes.

A load on a beam is said to be 'unsymmetric' when its vertical
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plane does not coincide with one of the principal axes of the

section area. The simplest case is that shown in Fig. 166a,

where the broken lines show the principal axes of a rectangular

section, and the load P is appUed at a certain distance from the

vertical axis. If the load is on a beam with supported ends, it

is plain that the reactions of the end will not be uniformly dis-

tributed over the supports and hence the right-hand part of the

section will be but slightly stressed. If the beam is fastened to

the supports, the reaction may be downward or negative on the

right-hand part and upward on the left-hand part, so that tor-

sional stresses will be developed. This case is one that should

be avoided, for it is clear that parts of the beam are much more

highly stressed than when the load is placed so that its resultant

coincides with the vertical principal axis.

..+._.
2

4-:^,..

Fig. 166a Fig. 1666 Pig. 166(;

Fig. 1666 shows a case of imsymmetric loading which occurs in

a purlin beam connecting two roof trusses. The upper chords or

main rafters of the truss being inclined to the horizontal at the

angle ^, the upper and lower surfaces of the horizontal purlin

have the same inclination, and the load on its upper surface

makes the angle ^ with the principal axis 2-2. Let /i and I2

be the moments of inertia of the section area with respect to the

principal axes i-i and 2-2. Let M be the bending moment at

the dangerous section due to the vertical loads, then the compo-

nent M cos'^ acts in the plane 2-2 and produces the imit-stress

Si=ciM cos^//i, where Ci is the distance from i-i to the upper

or lower surface of the beam. When ^ is not a large angle, the

unit-stress ^i is frequently computed by this method and regarded

as the actual flexural stress. For example, let the angle ^ be

30 degrees, the simple beam be 4 inches wide, 6 inches deep,

13 feet in span, and be subject to a total uniform load of 600

poimds. Here M = ii 700 pound-inches, 7i = 72 inches*, Ci=3
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inches, and then 51=490 pounds per square inch; this is much
smaller than the actual unit-stress.

Another method of dealing with the last case is to consider

the neutral axis mn as horizontal, to find the values of c and /

with respect to it, and then to compute the unit-stress from the

flexure formula S=Mc/I. Here c is the distance from the

remotest fiber at the upper or lower comer to the neutral axis

and it is easy to show that.c=Ci cos^-f C2 sin0, where Ci and C2

are the coordinates of the comer with respect to the principal axes

i-i and 2-2. It may also be shown that I=Ii coa^(f)+l2sm^<p

gives the moment of inertia of the section area with respect to

the axis mn. For the above numerical example, Ci=3 and

C2 = 2 inches, /i=72 and 12=32 inches*; then c=3.6o inches,

7=62 inches*, and finally 5 =680 poimds per square inch. It

is, however, not correct to assume that the neutral axis is hori-

zontal and the computed value of 5 is too small.

A more precise method is to resolve the vertical load on the

purlin into components parallel to the principal axes, those

normal to i-i producing the moment M cos0 and those normal

to 2-2 producing the moment M sin(^. Then the flexural unit-

stress due to the first moment is Si —ciM cos^//, and that due

to the second moment is S2=C2M sin^/l2- The actual unit-

stress on the remotest fiber then is,

5=5i+52=i/(^+^) (166)

For the above numerical example, this formula gives 5= 780

pounds per square inch, which is a more reliable value than those

found by the other methods. It does not, however, give sufficient

weight to the influence of the component M sin^, since the forces

that cause this moment act in the plane of the upper surface of

the beam. For a case like Fig. 166c, where the forces Pi and

P2 act in the lines of the principal axes, this method is strictly"

correct, M being the moment due to the resultant P which makes

the angle
<f>

with 2-2; by discussing this case it can be shown

that the neutral axis mn is not normal to the plane of M except

when /i and I2 are equal.
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Formula (166) applies to the discussion of the Z bar shown

in Fig. 166<^, as soon as the values of c\, C2, Ii, I2, and (p are

known. Table 11 gives data for a few Z bars with equal legs,

this being a part of the table in the Cambria pocket book. The
moments of inertia /„ and /& are those with respect to the axes

a-a and b-b, while the principal axes are i-i and 2-2. The
value of 12 is found by 12 = 0^^, where a is the section area

and r2 the least radius of gyration. The value of I\ is found

by subtracting I2 from the sum la+ h- The tangent of the

angle (j) is given in the sixth column of the table, and from this

the values of cos^ and sin^ are readily found. For example,

take a Z bar 8 inches deep with legs 3 inches long, and let a load -

P be apphed as shown in Fig. 166rf which produces a bending

momentM equal to 120 000 pound-inches. Making a drawing of

the section from the data in the table, the measured values of.

ci and C2 normal to the axes i-i and 2-2 are found to be 4.61

and 1.60 inches. From' the given value tan^=6.27, there are

found 003^=0.965 and sin0 =0.260. Following the above rules,

the principal moments of inertia are 72 = 2.56 and 71=50.24
inches*- The formula (166) then gives 5=30100 pounds per

square inch for the stress on the upper or lower comer of the

end of the leg. By using the rough method in which aa is taken

as the neutral axis, there is found 5 = 120000X4/44.64 = 10800

pounds per square inch, which is about one-third of the former

value. Consideration of Fig. 166a indicates, however, that

the actual unit-stress in the comer of the Z bar is probably higher

than 30 100 pounds per square inch.

Prob. 166a. Show that the angle
(f>

which gives the greatest flexural

unit-stress for the cases of Fig. 166i is that for which tan^=C2/i/ciZ2.

Prob. 1666. Show that the angle d between the neutral axis nm
and the principal axis i-i in Fig. 1666 is given by tan^= — (/i//2)tan^.

For the above example of the purlin beam, show that ^ is 5 if degrees,

and that hence the neutral axis is inclined 2 if to the horizontal.

Prob. 166c. Compute the unit-stress 5 for a Z bar 6 inches deep

with legs 3i inches long, when used as beam imder a bending moment
of 90000 pound-inches.
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Art. 167. Euler's Modified Formula

Euler's fonnula for columns expresses the condition of in-

different equilibrium, or that state which borders between stable

and imstable equilibrium. In all cases of indifferent equilibrium

slight causes produce marked effects, and hence it seems important

to inquire whether Euler's formula, as given in Art. 78, repre-

sents the exact relation between P/a and l/r. It will be apparent

on reflection that, while the fonnula contains but one length I,

there are really three different lengths that should be taken into

consideration. Let / represent the length of the straight column

in its unstrained state, l\ the length of the straight column after

compression by the unit-stress P/a, andi2 the chord of the deflected

curve after lateral bending.

Referring now to formula (45), it is seen that this does not

include the effect of the longitudinal compression P/a. To in-

troduce this, let S be the total imit-stress produced by both flexure

8-nd compression ; then in the demonstration the first four formulas

will be thus modified:

VI \^ ^-'^ S-P/a_Edh M

and then the reasoning leads to the following modified equation

of the elastic curve of the deflected column,

Passing now to Euler's deduction in Art. 78, the bending moment

M is replaced by —Py, and the equation of the elastic curve

for a round-ended column is found to be,

y=f smx{Pl/EIk)i

Here y=o when x=l2; hence by the same reasoning as before

there is deduced the fonnula,

P=nmi . him or P/a=n^Erni/lli

which is the condition for the state of indifferent equilibrium.

To complete the investigation, h and h are to be expressed

in terms of I. Now l—l\ is the deformation due to the longi-
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tudinal compression PIa, and from the definition of the modulus

of elasticity in Art. 9 its value is h=l{i-P/aE). To find h it

is plain that h -h is the fall at the end of jthe column due to the

lateral flexure and that PQi-h) is the work done in this fall.

This external work must equal the internal work of the flexural

stresses. From Art. 123,

and integrating this between the limits x=o and x=l2, the internal

work K is fotmd to be P^Phlifil- Therefore, equating the

external to the internal work, the value of l\—li is found to

be PPh/^I. Accordingly,

h= l{i-P/aE) l2=l(z-P/aE)/(i+pp/4ar^

are the required values in terms of the original length.

The quantities P/aE and Ppl^ar^ are small in comparison

with unity, and hence their squares and their product ,may be

neglected; also the reciprocal of i—P/aE may be taken as

I + P/aE. Introducing the values of h and I2 into the above

expression for P it reduces to,

-=7r2£"^(i+-+——,),

and since ji^Er^/P is a close approximation to the value of P/a

it may replace the latter in the parenthesis, giving finally,

which is Euler's modified formula for round-ended columns.

By writing 2^^^ instead of vt^ it applies to a column with one

end round and the other fixed, and by writing 47:^ instead of n^

it applies to a column with both ends fixed.

Another modification of Euler's formula which has been
frequently given is derived by considering only / and /i, so that
the equation of the elastic curve becomes,
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Accordingly Euler's formulas as deduced in Art. 78 are to be

modified by replacing E by P/a, and then solving for P/a. For

a column with both ends round this leads to the form,

P 7t^E(r/f)^

a~i+?r2(r//)2

which shows that the unit-load required to hold the column in

indifferent equiHbrium is less than 7i^E(r/l)^. By taking I2 into

account, as is done above, the unit-load is foimd to be greater

than n^E{r/l)^, and (167) also indicates that P shghtly increases

with the deflection /, so that after a sUght deflection has been

attained the value of/ is not wholly indeterminate, as the common

theory teaches.

Prob. 167. Show that the fall of the load P, due to direct com-

pression of the column, equals the fall due to the lateral flexure when

/ is equal to ar.

Art. 168. Testing Machines

The first experiments on the strength of materials were made
on the rupture of .beams of timber. A picture in Galileo's Discorsi

(Leiden, 1638), shows a cantilever beam projecting from a wall

and loaded at the free end with a heavy weight, and it was probably

from experiments of this kind that Galileo was led to the con-

clusion that the strength of rectangular beams varies as the squares

of their depths. During the eighteenth century experiments

were made by Mariotte, Parent, and others on timber in flexure

and tension, only questions of ultimate strength being in-

vestigated, while the elastic limit was unrecognized. Hooke's

law of the proportionahty between stress and deformation had,

indeed, been annoimced in 1678, but it was not imtil 1798 that

Girard made the first comprehensive series of experiments on

the elastic properties of beams. Early in the nineteenth century

appeared the 'Lectures on Natural Philosophy' by Young in

which is fotmd a clear presentation of many of the laws of flexure

both imder static forces and under shock. It also introduces

for the first time the modulus of elasticity, E, but fails to note

that it can only be deduced or appUed when the elastic limit of
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the material is not surpassed. A little later Barlow, Tregdold,

and Hodgkinson experimented on timber and cast iron,, both,

in the form of beams and of columns ; their methods and results,

although now seeming rade and defective, are deserving of praise

as the first of real practical value.

In 1849 was pubUshed the 'Report of the Commissioners on

the Application of Iron to Railway Structures ', which may be

regarded as the landmark of the beginning of modem methods

of testing. It contains the records of valuable tests by Willis,

James, Hodgkinson, and Galton on the strength of cast and

wrought iron as well as upon the resistance to impact, investi-

gations of the increase in stress caused by a roUing load on a

beam, experiments on the fatigue of metals, and the evidence

given by leading British engineers as to their opinions' on proper

factors of safety under different conditions. The immediate

result of this report was the decision by the English board of

~lfade that the factor of safety for cast iron should be twice as

great for rolling loads as for steady ones, while throughout both

Europe and the United States it excited a marked interest and

impetus in the subject of testing materials.

The first testing machines in the United States were those

built by Wade and Rodman between 1850 and i860 for testing

gun-metal for the government. About this time the rapid intro-

duction of iron bridges led to experiments by Plympton and by
"

Roebling. Prior to 1865 apparatus was built by each experi-

menter for his special work, but in this year Fairbanks put upon

the market the first testing machines for commercial work. A
little later the machines of Olsen and of Riehl6 for tensile, com-

pressive, and flexural tests were introduced and have since been

widely used. The machine devised by Emery, soon after 1875,

is a very precise apparatus which is used in large laboratories.

Large machines for testing eye-bars .have been built by bridge

companies since 1880, and numerous testing laboratories now

contain machines for every kind of work.

The capacity of a testing machine is the tension or pressure

which it can exert. A small machine for testing cement by
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tension has usually a capacity of i ooo or of 2 000 pounds. Ma-

chines of 50000, 100 000, and 150000 pounds for testing metals

are common. The Emery machine at the government arsenal

at Watertown, Mass., has a capacity of i 000 000 pounds, and

it can test a bar 30 feet long or a small hair with equal precision.

The eye-bar machine at Athens, Pa., has a capacity of i 244 000

pounds, and that at Phcenixville, Pa., a capacity of 2 160 000

pounds. It forms no part of the purpose of this book to give

descriptions and illustrations of these machines ; Martens' Hand-

book for Testing Materials (Berlin, 1898; New York, 1899)

may be referred to as giving thorough and comprehensive dis-

cussions of both testing machines and of methods of testing.

Tensile tests are the most common and some commercial

machines are arranged with an autographic recording apparatus

whereby a card is secured which shows the relation between the

load and the elongation throughout the test. There are also a

number of autographic recording devices in the market, which

may be attached to any machine. When such a graphic record

is taken, the yield point, ultimate strength, and ultimate elonga-

tion may be read from it. Nearly all tensile machines may be

also used for compressive tests, and also for flexural tests on short

beams. The smaller machines are operated by hand, while

power is required to rim the larger ones. Screw machines in

which the load is brought upon the specimen by the help of large

screws are generally preferred in the United States, while hy-

drauHc machines in which a hydrauUc press is used to transmit

the load to the specimen are preferred in Europe. The machine

of Emery is hydraulic; other American makes are screw machines.

Commercial tests of materials are rarely made under shearing

and torsional stresses. Thurston in 1870 devised a torsion

machine for small specimens, and the torsion machines of Olsen

and of Riehld, which are found in the laboratories of most engi-

neering colleges, prove very serviceable for illustrating the phe-

nomena of twisting. Impact machines have been built for special

investigations, but the only one on the market is that of Keep

which is designed for tests of bars of cast iron. Fatigue or



436 Miscellaneous Discussions Chap. XVIII

endurance tests, which subject the specimens to alternating

stresses for long periods of time, have not been made except in

laboratories.

The testing of materials has assumed such great importance

since 1890 that all engineering colleges have provided laboratories

for the purposes of instruction and research. The work done

by some of these has proved of much value to the engineering

profession; the work of Hatt on impact tests of metals and that

of Talbot on reinforced-concrete beams may be cited as examples.

Manufacturers of iron and steel, and large railroad companies,

have installed laboratories for the testing of their products and

purchases, several of these having a machine of 300 000 pounds

capacity as well as smaller ones. The many series of tests con-

ducted by Howard at the Watertown arsenal may be mentioned

as part of the valuable work done by the government of the

United States. The largest testing laboratories, however, are

found in Europe, that at Berlin, under the directorship of Martens,

standing at the head; this has a floor area of 10 360 square meters

or about 2J acres.

Prob. 168. Consult Das konigliche Materialpriifungsamt der tech-

nischen Hochschule, Berlin, 1904, and ascertain the various kinds of

work done in that great laboratory.

Art. 169. Testing or Materials

The specimens for tensile tests are either flat or round. A
flat specimen is rarely used except for plates, and its standard

size is 18 inches in length, 2 inches wide along the ends and

1 1 inches wide for a central length of about 9 inches, while the

thickness is the same as that of the plate from which it is cut.

Wire and rods are frequently tested just as they come from' the

mill, the length between the jaws of the machine being usually

more than ten times the diameter. Standard round specimens

are cut from axles, shafts, beams, and other manufactured

products. Prior to 1895 the standard size of the round specimen

was I inch in diameter along a central length of 9 inches, while

the ends were larger and provided with screw threads. Both
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flat and round specimens are frequently called 8-inch specimens

because two marks are placed upon them 8 inches apart for the

purpose of measuring the elongation. Since 1895 there has been

gradually coming into use in the United States a smaller size for

round specimens which is shown in Fig. 169a; this is called the

2-inch specimen, because the central part is a little more than

2 inches long and the marks are placed upon it 2 inches apart;

the diameter of this specimen is 0.5 inch or sometimes 0.505

inches. This smaller specimen has the advantage that less material

is required to be wasted in taking it from an axle or shaft, but it

has the disadvantage that percentages of elongation computed

from it are greater than those determined from the 8-inch speci-

men (Art. 25). In Art. 12 will be found a description of the

tests of these 2-inch specimens.

mmmm
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Fig. 169o

Flat specimens are usually griped by the jaws of the machine,

while the standard round specimens screw into nuts to which

the tension is applied. The load transmitted through the speci-

men is weighed by a scale at the end of a compound lever. In

commercial tests the ultimate elongation is alone measured;

this is done by two marks on the specimen and measuring the

distance between them before and after rupture. In scientific

tests an extensimeter is attached to the specimen, so that the

elongation can be read at each increment of weight. The elonga-
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tion is usually expressed as a percentage of the original length be-

tween the two marks on the specimen, and for the reason above

stated it is always desirable that the original length and the

diameter of specimen should be mentioned in the report. For

ductile materials, like wrought iron and mild steel, it is customary

to slowly reduce the load after the ultimate strength is reached;

the material is then flowing rapidly, so that the elongation con-

tinues to increase, and hence a greater percentage of elongation

is obtained.

Fig. 1696

Compressive tests are mainly confined to brick, stone, and

concrete, and are but little used for metals on account of the

expense of preparing the specimens with truly parallel sides.

Since these specimens are short, it is difficult to obtain precise

measures of the change of length; the ultimate shortening is

rarely observed, because it is difficult to note the moment when

it occurs. Failure in the case of brittle materials occurs by a

diagonal shearing as explained in Arts. 18 and 147. Fig. 1696

shows a cube of neat cement and a timber block which have
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failed in this manner; the section area of each of these specimens

is 2X2 inches.

In flexural tests the load is usually applied at the middle

of a beam supported at its ends and gradually increased until

rupture occurs, the deflection being measured also as a test of

stiffness. The apparatus for determining the deflection should

be attached to the supports so that the compression of these

may not affect the observed values. In the simplest case weights

are hung upon a ring or stirrup placed upon the middle of a

simple beam, and are added in regular increments of 100 pounds,

more or less, depending upon the size of the beam. When the

elastic limit' is not, exceeded the modulus of elasticity E may
be computed from the observed deflection by the formula deduced

in Art. 55. From the breaking load P, the flexural strength

or modulus of rupture S^ may be computed from the flexure

formula (41) ; this lies between the ultimate tensile and com-

pressive strengths of the material, and although not a physical

constant (Art. 52) it is useful for comparing different qualities

of the same material.

Torsion tests are not used for commercial purposes, but in

scientific laboratories much has been learned by the use of tor-

sion machines. Fig. 169c shows three specimens which have

been subjected to torsion, the first being a square steel bar which

broke at the upper end, the second a round bar of cast iron, and

the third a rectangular steel bar which was ruled with white

hnes in order that the distortions might be studied; discussions

of these experiments are given in Arts. 94 and 99.

Impact tests are regarded as of much value in judging of

the quahty of ductile metals. The cold-bend test, briefly de-

scribed in Art. 24, is one that has been known from the earliest

times and which is constantly used in all mills where wrought

iron or steel is produced. The bending of the specimen is gener-

ally done by blows of a hammer, although steady pressure is

sometimes employed. Notwithstanding that no numerical re-

sults are obtained from the cold-bend test, except the final angle

of bending, the general information that it gives is of the highest
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Fig. 169(;
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importance, so that it has been said that, if all tests of metals

except one were to be abandoned, the cold-bend test should

be the one to be retained. In the roUing-mill it is used to judge

of the purity and quaHty of the muck bar; in the steel mill it

serves to classify and grade the material ahnost as well as chemical

analysis can do, and in the purchase of shape iron it affords a

quick and satisfactory method of estimating toughness, ductility,

strength, and capacity to resist external work.

It is very important, in order that the results of tests made
in different laboratories inay be compared and correct conclu-

sions be drawn therefrom, that the methods of testing shall be

uniform. In 1882 a number of German professors met at Munich

to discuss this question, and other conferences were held in 1884,

1886, 1888, and 1893, at which engineers from other European

countries were present. In 1895 the International Association

for Testing Materials was formally organized at Zurich, its

object being "the development and imification of standard

methods of testing for the determination of the properties of

materials, and also the perfection of apparatus for that purpose."

The second Congress of the Association met at Stockhohn in

1897, the third at Budapest in 1902, and the fourth at Brussels

in 1905, these being attended by representatives of about twenty

different countries. Affihated with the International Association

are several national societies which are engaged in the same

work. The American Section of the International Association,

organized in 1898, became in 1901 the American Society for

Testing Materials. The number of members of the International

Association at the beginning of 1905 was 2215, representing 24

different countries; of these, 580 members were in the United

States, 367 in Germany, 357 in Russia, 193 in Austria, 154 in

France. The official organ of the International Association

is the journal ' Baumaterialienkunde, published semi-monthly at

Stuttgart, Germany. The American Society for Testing Mate-

rials published the fifth volume of its Proceedings in 1905.

Prob. 169. Refer to Hatt and Marburg's Bibliography of Impact

Tests and Impact Testing Machines, published in Vol. II of the Pro-
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ceedings of the American Society for Testing Materials; consult several

references and describe one or more machines for making impact tests.

Art. 170. Rules for Testing

When materials or manufactured products are to be pur-

chased, the requirements that they must fulfill are generally

expressed in 'specifications'. If it is specified that certam tests

are to be made, or certain test specimens be used, it is necessary

that this should be done most carefully, and no deviation from

the given requirements can be allowed. Full specifications re-

garding machines and methods of testing are, however, rarely

made by a purchaser, so that considerable latitude is allowed,

but in all cases it should be the aim of the engineer in charge

of the tests to so conduct the work that it shall be well and truly

done. Certain general rules regarding testing machines and

their use will hence be given here, and the observance of these

as far as practicable will conduce to uniformity of methods

and to reliability of the results, these rules applying mainly to

machines for common tensile tests.

1. A machine should be so constructed that the load borne

by the specimen alone is registered upon the weighing scale,

so that its readings may not include any force expended in

friction on the pivots or moving parts of the machine.

2. A machine should be from time to time rated or cali-

brated, to ascertain if the readings of the weighing scale are

correct, or that the etrors of its readings may be known.

3. The construction of the machine should be such that,

.

when properly operated, the Specimens may not be subject to

shock.

4. The holders or jaws which gripe the ends of a tensile

specimen should be so arranged that the resultant load coin-

cides with the axis of the specimen, in order that the stress

may be uniformly distributed over the section area.

5. The use of serrated wedges for holding the ends of

specimens is not advisable unless those ends are larger in

section area than the main part of the specimen.
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6. The load upon specimens of ductile materials should

be applied at a slower rate within the elastic limit than after

that limit is passed.

7. When the elastic limit is specified, this is not to be

determined by the drop of the scale beam, but by measuring

the increments of elongation corresponding to increments of

the load; the drop of the beam indicates the yield point.

8. Percentages of elongation should be accompanied by

a statement of the size of the test pieces from which they were

determined.

Many other rules have been proposed, but it is believed that

the above are nearly all which will be universally accepted as

essential ones in tensile tests. For compressive tests the follow-

ing may be noted as desirable requirements

:

9. The surfaces to which the pressure is applied should

be truly parallel, in order that the stress may be uniformly

distributed over the section area; this distribution will be

more perfect if one of the supports is arranged so as to be

movable in all directions.

10. The cube is probably the best form of compression

specimen, because it has been so widely used that the results

of tests are better comparable with previous records than if

prisms are used.

For flexural tests it is not so easy to state definite rules, but

it will be generally admitted that the supports should be rotmded,

so as not to indent the beam or prevent the ends from taking

the inclination of the theoretic elastic curve. When deflections

are measured, the apparatus should be attached to the ends of

the beam, if any yielding of the supports can occur. In all

static tests of tension, compression, or flexure, it should be the

aim to secure measurements which can be reUed upon as correct

with a probable error not exceeding one-half of one percent.

Impact tests of rails, axles, and car-wheels are usually made

by a simple apparatus which consists of a ram falling between

guides. It is here important that the guides should not retard

the fall of the ram, that the shape of the ram should be such

as to prevent lateral oscillation, that the surface struck should
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be level, that the weight of the supports of the specimen should

be at least ten times that of the ram, and that these supports

should rest upon masonry.

In conclusion it may be noted that all the theoretic discussions

of this volume are of assistance in conducting tests of materials.

When a tensile test is to be made, it must not be forgotten that

rehable results cannot be obtained unless the specimen is placed

in the machine in such a manner that there is no tendency to

flexure; when a compressive test is to be made, the influence

of an eccentric load should be kept in mind; when a flexural

test is to be made, the theory of flexure should be understood.

Clear and definite ideas regarding elastic limit and yield point

will avoid misunderstanding. Theory and practice should always

go hand in hand, each supplementing and explaining the other.

Prob. 170. Consult a paper by Goss in Vol. Ill of Proceedings of

American Society for Testing Materials, and describe the drop test-

ing machine of the Master Car Builders' Association.

Art. 171. Specifications foe Structural Steel

When materials are to be purchased, a set of rules is usually

prepared giving requirements regarding quality and tests, and

these rules are called 'specifications '. There is much variation

in siich specifications owing to the different opinions of buyers

and the use which is to be made of the material. The following

specifications for structural steel will give the student an idea

of the extent and scope of the requirements which are generally

demanded for steel to be used in buildings, bridges, and ships.

The order of arrangement is similar to that of the specifications

adopted by the American Society for Testing Materials and the

American Railway Engineering and Maintenance of Way Asso-

ciation, but the requirements differ in a few particulars.

1. Structural steel shall be made by the open-hearth process.

2. Each of the three classes of structural steel shall conform

to the following limits in chemical composition: Sulphur shall

not exceed o.o6 percent; Phosphorus shall not exceed 0.07 per-



Akt. 171 Specifications foe Structural Steel 445

cent when the steel is made by the add process and not exceed

0.04 percent when it is made by the basic process.

3. There shall be three classes of structural steel for bridges

and ships, namely, rivet steel, soft steel, and medium steel, which

shall conform to the following physical requirements: Rivet

steel shall range in tensile strength from 50 000 to 55 000 pounds

per square inch, have a yield point not less than 33 000 pounds per

square inch, and the elongation in 8 inches shall not be less than

26 percent. Soft steel shall range in tensile strength from 55 000

to 60000 pounds per square inch, have a yield point not less

than 35 000 povuids per square inch, and the elongation in 8

inches shall not be less than 25 percent. Medium steel shall

range in tensile strength from 60 000 to 65 006 pounds per square

inch, have a yield point not less than 37 000 pounds per square

inch, and the elongation in 8 inches shall not be less than 23

percent.

4. For each increase of ^ inch in a flat specimen above a

thickness of f inches, a deduction of i shall be made from the

above specified elongation. For each decrease of -^ inch below a

thickness of t\ inches, a deduction of 2J shall be made from the

above specified elongation. ~ For bridge pins the required elonga-

tion shall be 5 less than that above specified, as determined on

a test specimen the center of which shall be one inch from the

surface of the pin.

5. Eye-bars shall be of medium steel. Full-sized tests shall

show i2|^ percent elongation in 15 feet 'of the body of the eye-

bar, and the tensile strength shall not be less than 55 coo pounds

per square inch. Eye-bars shall be required to break in the body,

but should an eye-bar break in the head, and show 12J percent

elongation in 15 feet and the tensile strength specified, it shall

not be cause for rejection, provided that not more than one-

third of the total number of eye-bars tested break in the head.

6. The three classes of structural steel shall conform to the

following bending tests; and for this purpose the test specimen

shall be i^ inches wide, if possible, and for all material f inches

or less in thickness the-test specimen shall be of the same thick-
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ness as that of the finished material from which it is cut, but for

material more than | inches thick the bending test specimen may

be J inch thick:

Rivet steel shall bend cold i8o degrees flat on itself without

fracture on the outside of the bent portion. Rivet rounds shall

be tested of full size as rolled.

Soft steel shall bend cold 180 degrees flat on itself without

fracture on the outside of the bent portion.

Medium steel shall bend cold 180 degrees around a diameter

equal to the thickness of the specimen tested, without fracture'

on the outside of the bent portion.

7. The standard test specimen of 8 inches gauged length

shall be used to determine the physical properties specified in

paragraphs Nos. 3 and 4. The standard size of the test speci-

men for sheared plates shall be ij inches in width for a length

not less than 9 inches, and of a thickness equal to that of the

plate. For other material the test specimen may be the same as

for sheared plates or it may be planed or turned parallel through-

out its entire length, and in all cases where possible two opposite

sides of the test specimen shall be the rolled surfaces. Rivet

rounds and small rolled bars shall be tested of full size as rolled.

8. One tensile test specimen shall be taken from the finished

material of each melt or blow, but in case this develops flaws, or

breaks outside of the middle third of its gauged length, it may

be discarded and another test specimen substituted therefor.

9. One test specimen for bending shall be taken from the

finished material of each melt as it comes from the rolls, and for

material | inches and less in thickness this specimen shall have

the natural rolled surface on two opposite sides. The bending-

test specimen shall be i^ inches wide, if possible, and for material

more than | inches thick the bending-test specimen may be §

inch thick. The sheared edges of bending-test specimens may
be milled or planed.

10. Material which is to be used without annealing or further

treatment shall be tested for tensile strength in the condition in
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which it comes from the rolls. Where it is impracticable to

secure a test specimen from material which has been annealed

or otherwise treated, a full-sized section of tensile-test specimen

length shall be similarly treated before cutting the tensile-test

specimen therefrom.

11. For the purpose of this specification, the yield point shall

be determined by careful observation of the drop of the beam

or halt in the gauge of the testing machine.

12. In order to determine if the material conforms to the

chemical limitations prescribed in paragraph No. 2 herein,

analysis shall be made of drilHngs taken from a small test ingot.

13. The variation in cross-section or weight of more than 2^

percent from that specified will be sufl&cient cause for rejection,

except in the case of sheared plates, which will be covered by the

following permissible variations

:

Plates 12J poimds per square foot or heavier, up to 100 inches

wide, when ordered to weight, shall not average more than 2J
percent variation above or below the theoretical weight. When
100 inches wide and over, 5 percent above or 5 percent below

the theoretical wdght.

Plates imder 12^ pounds per square foot, when ordered to

weight, shall not average a greater variation than the following:

When less than 75 inches wide, 2J percent above or below the

theoretical weight. When 75 inches wide up to 100 inches wide,

5 percent above or 3 percent below the theoretical weight. When

100 inches wide and over, 10 percent above or 3 percent below

the theoretical weight.

When plates are ordered to gauge, a variation of more than

x^ inch below that specified for any dimension will be sufl&cient

cause for rejection. An excess in weight above the nominal

weight may, however, be allowed, as agreed upon between the

inspector and the manufacturer.

14. Finished material must be free from injurious seams,

flaws, defective edges, or cracks, and have a workmanlike finish..

15. Every finished piece of steel shall be stamped with the
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melt number, and steel for pins shall have a melt number stamped

on the ends. Rivets and lacing steel, and small pieces for pin

plates and stiffeners, may be shipped in bundles, securely wired

together, with the melt number on a metal tag attached.

i6. The inspector representing the purchaser, shall have all

reasonable facilities afforded to him by the manufacturer to satisfy

him that the finished material is furnished in accordance with

these specifications. All tests and inspections shall be made at

the place of manufacture, prior to shipment.

Prob. 171. Consult Proceedings of the American Society for Test-

ing Materials, Vol. IV, 1904, and ascertain the tests recommended by

Webster for detecting brittle steel. Young men should also read the

excellent advice given in Vol. V of the same Proceedings by President

Dudley in- his address on the duties and responsibilities of the testing

and inspecting engineer.
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Chapter XIX

MATHEMATICAL THEORY OF ELASTICITY

Art. 172. Introduction

The mathematical theory of elasticity is that science which

treats of the behavior of bodies imder stress when the law of

proportionaUty of deformation to stress is observed. All the

theoretic formulas of the preceding pages have been derived

by the help of this law, but these constitute only a part of the

mathematical theory of elasticity. The formulas derived for the

deformation of bodies under tension or compression suppose the

bodies to be homogeneous or isotropic, so that the modulus of

elasticity E is the same for all directions; some materials, how-

ever, have different properties of stiffness in different directions

so that there may be several values of E to be considered, this

being especially the case with crystals. The theory of elasticity

takes account of such non-homogeneous structure and deduces

formulas for the deformations due to forces apphed in different

directions. In this chapter only the elements of this theory can

be given, and in general the bodies under stress will be regarded

as homogeneous. The complete theory deals not only with

elastic solids, but with fluids, gases, and the ether of space, while

the discussion of stresses and deformations, both in homogeneous

and crj'ftrlline bodies, leads to the investigation of wave propa-

gations, the time and velocity of elastic oscillations, and numerous

other phenomena of physics.

Statics proper is concerned only with rigid bodies, while the

theory of elasticity deals with bodies deformed under the action

.of exterior forces and which recover their original shape on the

removal of these forces. All the principles and methods of

statics apply in the discussion of elastic bodies, but in addition

new principles based upon Hooke's law arise. The amount of

deformation being small within the elastic limit for common
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materials, it is allowable to neglect the squares and higher powers

of a unit-elongation in comparison with the elongation itself,

as set forth in Art. 13. By the help of this principle, the elas-

tic change in voliime of a body may be found (Art. 173), the

modulus of elasticity for tension or compression is found to have

a certain relation to the modulus of elasticity for shearing (Art.

181), and a new modulus of elasticity based on change in volume

is introduced (Art. 182).

The general case of a body acted upon by forces in several

directions occupies the main part of this chapter, this case requir-

ing the use of three rectangular coordinates. This chapter, then,

is an extension of the methods of Chapters XI and XV, and

includes those methods as special cases. It has been prepared

from the point of view of the engineer rather than that of the

pure mathematician, and should be regarded only as an intro-

duction to the mathematical theory of elasticity.

The student should consult the article on Elasticity by Kelvin

in the Encyclopaedia Britannica, as also the History of Todhunter

and Pierson. The works of Clebsch (Elasticitat fester Korper,

1862), Winkler (Elasticitat und Festigkeit, 1867), Grashof (Theorie

der Elasticitat und Festigkeit, 1878), and Flamant (R&istance des

Mat^riaux, 1886) may be mentioned as treating the subject both

from the theoretical and the engineering point of view.

Prob. 172. Consult Todhunter and Pierson's History of the Theory

of Elasticity and of the Strength of Materials, and ascertain some-

thing about the important investigations of Saint Venant.

Art. 173. Elastic Changes in Volttme

The changes in section area and in volume which occur when

a bar is under axial stress have been discussed in Art. 13, and

the same method will now be applied to the case of a body acted

upon by forces in different directions. When the elastic limit

of the material is not surpassed, the deformation due to any

appUed force is proportional to that force for deformations in

any and all directions, and the principles of Art. 139 enable

these to be determined.
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The simplest case is that shown in Fig. 173, where a parallelo-

piped is acted upon by the tensile unit-forces Si, S2, S3 in three

rectangular directions. The body is regarded as homogeneous,

so that the factor of lateral contraction A and the modulus of

elasticity E are the same in all direcHons. Let ei be the unit-

elongation due to Si or £i=Si/E, also £2=S2/E and es^Ss/E.

Then the actual unit-elongations which take place in the three

rectangular directions are given by,

e'=ei—^£2— As3 «"=£2— ^£3— A^l e"'=S3— ^£1— ^£2

Now for any cube of edge unity, the volume after the application

of the unit-forces 5i, 52, S3 is {i+ e')(i + s")(i + ^"), and since

e', e", s"' are small compared with imity, this product is

I -1-
e'

-I- e" + £"' (Art. 13). Accordingly, the elastic change in

the unit of volume is,

e'+ e"-f £'"= (i - 2A)(ei-F £24- 63)^(1- 2k)(Si+S2+S3)/E (173)

Here it is seen that there is no change in volume when A= J.

For all the materials of construction it is found that the factor

of lateral contraction is less than ^, so that they increase in volume

under tension and decrease under compression.

In the above discussion the unit-forces Si, S2, S3 are regarded

as tensile, but the formula for change of volume applies equally

well when one or all of them are compressive; for example, if

Si is tension and ^2 and S3 are compression, the values of 52

and S3 are to be taken as negative. The above formula refers

to unit of volume and the actual change in a parallelopiped of

given dimensions is found by multiplying

the unit-change by the number of units

of volume in the body. For example, let

a brick 2X4X8 inches be subjected to a

compression of 12 800 pounds upon the

two flat sides, to a compression of 48 000

pounds upon the two narrow sides, and

to a tension of i 600 pounds upon the two ends. Here Si =
— 12800/32 = — 400, 52= —4800/16= —300, and 53 = -I- 1600/8

= -1-200 pounds per square inch; then 5i -1-52 -I-53= -500

pounds per square inch. Taking A=o.2, and £= 2000000
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pounds per square inch, the change per unit of volume is found

to be -0.0002, so that the decrease in the volume of the paral-

lelepiped is 0.0002X64=0.0128 cubic inches.

Elastic changes in section area due to the action of several

forces are readily expressed in a similar manner. For instance,

in the imit cube let a plane be drawn normal to ^i cutting out

a square; its area after the application of the three forces is

(i + e")(i + «"'), which is equal to i + e"-|-e'". Hence the

change per unit of section area is found from (173) by making

e' and Si equal to zero. Thus, for the above numerical example,

the change per unit of section area normal to Si is —0.00004,

so that the decrease in this section axea is 0.00004X8=0.00032

square inches.

When a body is under uniform compression in all directions,

as is the case when it is subjected to fluid pressure, the imit-

stresses Si, S2, S3 are equal, as also the unit-deformations ei,

S2, £3. For this case the change per unit of length is the same

in all directions and equal to (i — 2^)£, the change per unit of

area in any section is 2(1 — 2X) e, and the change per unit of volume

is 3(1 — 2A)£, where e is the unit-change S/E which would be

caused by an axial unit-stress S which is equal to the uniform

compressive unit-stress. The change in section area is hence

double, and the change in volume is three times that in a linear

dimension.

Prob. 173. Make experiments upon india rubber with the inten-

tion of finding the value of the factor of lateral contraction for that

material.

Art. 174. Normal and Tangential Stresses

The general case of internal stress is that of an elementary

parallelepiped held in equiUbrium by apparent stresses applied

to its faces in directions not normal. Here each oblique stress

may be decomposed into three components parallel respectively

to three coordinate axes, OX, OY, OZ. Upon each of the faces

. perpendicujar to OX the normal component of the obhque unit-

stress is designated by Sx and the two tangential components
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Fig. 174

by Sxy and Sxz- A similar notation applies to each of the other

faces. An 5 having but one subscript denotes a tensile or com-

pressive unit-stress, and its

direction is parallel to the

axis corresponding to that

subscript. An S having two

subscripts denotes a shear-

ing unit-stress, the first sub-

script designating the axis to

which the face is perpendic-

ular and the second desig-

nating the axis to which the

stress is parallel; thus Six is on the face perpendicular to OZ and

its direction is parallel to OX. In Fig. 174 the nine components

for three sides of the parallelopiped are shown. Neglecting the

weight of the parallelopiped the components upon the three

opposite sides must be of equal intensity in order that equiUbrium

may obtain.

An elementary parallelopiped in the interior of a body is

thus held in equihbrium under the action of six normal and

twelve tangential stresses acting upon its faces. The normal

stresses upon any two opposite faces must be equal in intensity

and opposite in direction. The tangential stresses upon any

two opposite faces must also be equal in intensity and opposite

in direction.

A certain relation must also exist between the six shearing

stresses shown -in Fig. 174 in order that equilibriimi may obtain.

Let the parallelopiped be a cube with each edge equal to unity;

then if no tendency to rotation exists with respect to an axis

through the center of the cube and parallel to OX it is necessary

that Sy;, should equal S,y. A similar condition obtains for each

of the other rectangular axes, and hence.

= 5„ S„ (174)

that is, those shearing unit-stresses are equal which are upon

any two adjacent faces and normal to their common edge.

The apparent unit-stresses designated by 5 are computed by
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the methods of the preceding chapters; it is rare, however, that

more than three or four of them exist, even under the action of

complex forces. The general problem is then to find a parallele-

piped such that the resultant stresses upon it are wholly normal.

These resultant normal stresses will be Si, S2, S3, from which

by (139) the true normal stresses Ti, T2, T3 can be found. It

will later be shown that these stresses Si, S2, S3 are the maxi-

mum apparent stresses of tension or compression resulting from

the given normal and tangential stresses.

Prob. 174. I^et a, h, c be the angles which a line makes with the

axes OX, O Y, OZ, respectively. Show that the sum of the squares of

the cosines of these angles is equal to unity.

Art. 175. Resultant Stresses

The resultant unit-stress upon any face of the parallelopiped

in Fig. 174 is the resultant of the three rectangxilar imit-stresses

acting upon that face. Thus for the face normal to the axis

OZ the resultant unit-stress is given by,

and the total resultant stress upon that face of the parallelopiped

is the product of its area and R3.

The resultant unit-stress R upon any elementary plane having

any position can be determined when the normal and tangential

stresses in the directions parallel to the coordinate axes are known.

Let a plane be passed through the corners i, 2, -3, of the paral-

lelopiped in Fig. 174, and let a, h, c be the angles that its normal

makes with the axes OX, OY, OZ, respectively. Let a, /?, y,

be the angles which the resultant unit-stress R makes with the

same axes. Let A be the area of the triangle 123; then the total

resultant stress upon that area is AR, and its components parallel

to the three axes are AR cosa, AR cos/?, AR cos;-. The triangle

whose area is 'A, together with the three triangles o 2 3, o i 3, o i 2,

form a pyramid which is in equilibrium under the action of R
and the stresses upon the three triangles. The areas of these

triangles are A cosa, A cosh, A cose, and the stresses upon them
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are the products of the areas by the several unit-stresses. Now
the components of these four stresses with respect to each rectan

gular axis must vanish as a necessary condition of equilibrium.

Hence, canceUng out A, which occurs in all terms, there results,

R coso'= Sx cosa f Sxy cosb+ S^x cose

R cosl3=SxyCosa+Sy cosb+SeyCosc (175)

R cosy=Sxs cosa+Syz cosb+S^ cose

in which the second members are all known quantities.

From these equations the values of i? cosct, iJcos/?, i?cos;-

can be computed; then the sum of the squares of these is R^

since c6s%+cos2/?+cos^;-= i. The value of cosa is found by

dividing that of R cosa by R, and similarly for cos^S and cos;-.

Now the angle between the directions of R and the normal

to the plane is given by,

cos5=cosa cosa+ cos6 cos5-|-cose cos;-

and then the tensile or compressive unit-stress normal to the

given plane is R cos(?, while the resultant shearing unit-stress

is R sin^,. This shearing stress may be resolved into two com-

ponents in any two directions on the plane.

As a simple numerical example, let a bolt be subject to a

tension of 12 000 pounds per square inch and also to a cross-

shear of 8 000 pounds per square inch. It is required to find

the apparent unit-stresses on a plane making an angle of 60

degrees with the axis of the bolt. Take OX parallel to the ten-

sile force and OY parallel to the cross-shear. Then ^^ = + 12 000,

Sxy= Sooo, Syx=& 000, and the other stresses are zero; also

a= 30°, b = 6o°, and £ = 90°. Then from (175),

i? cos«=-f 14 390 i? cos/?= -I- 6930 i? cos7-=o

and the resultant stress on the given plane is,

R= (14 390^-f6 930^)*= 15 970 pounds per square inch

The direction made by R with the axis is now found:

cos a =1430/1597= 0.901 a=64i°

cos/?= 693/1597= 0.434 /?=25f°

and the angle included between the resultant R and the normal
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to the given plane is computed by,

003^=0.866X0.901+0.5X0.434=0.997

Lastly, the normal tensile stress on the plane is found to be

R cos^ = i5 920 pounds per square inch, while the shearing stress

on the plane is i?sin^= i 200 pounds per square inch.

Prob. 175. Find for the above example the position of a plane upon

which there is no shearing stress.

Art. 176. The Ellipsoid or Stress

Let the resultant unit-stress R upon any plane passing through

a given point in the interior of a stressed body make an angle

d with the normal to that plane. It will now be shown that,

for different planes through the given point, the intensity of R
may be represented by the radius vector of an ellipsoid.

Let J?i, i?2, R3 be the resultant unit-stresses upon the three

faces of the parallelopiped in Fig. 174, and let di, 62, 63 be the

angles which they make with the coordinate axis OX; then,

COsdi= Sx/Rl COsd2=Syx/R2 COs63= Szx/R3

determine the directions of i?i, R2, R3. Now let these direc-

tions be taken as those of a new system of oblique coordinate

axes, let R be the resultant unit-stress in any direction, and let

Rx, Ry, Rz be its components parallel to these new axes. Then

R cosct is the component of R parallel to OX, and,

R cosa=Rx cosdi+Ry cos^2+-'?z cos^s

or, inserting for the cosines their values, it becomes,

RcOSa=Sx{Rx/Rl)+Syx{Ry/R2)+S,x{Rz/R3)

Comparing this with the first equation in (175), it is seen that,

cosa=Rx/Ri cosb=Ry/R2 cosc=i?z/i?3

But the sum of the squares of these cosines is unity; hence,

iRx/Rif+ {Ry/R2?+ {RjR3f= I

in which the numerators are variable coordinates and the de-

nominators are given quantities. This is the equation of the

surface of an elhpsoid with respect to three coordinate axes

having the directions of Ri, R2, R3.
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The surface of an ellipsoid is hence a figure whose radius

vector represents the resultant unit-stress upon a plane the normal

to which makes an angle with the direction ot that radius vector.

If the forces are entirely confined to one plane, the ellipsoid re-

duces to an ellipse.

If there are three planes at right angles to each other which

are subject only to normal stresses, as in Fig. 176, the normal

unit-stresses Sx, Sy, Sz correspond

to Ri, i?2, Rb in the above equa-

tion of the ellipsoid. In this case

Sx, Sy, Sg are the three axes of

the ellipsoid. If now shearing

stresses are applied to the faces*

the ellipsoid wiU be deformed, and „. ^^g

the three axes will take other posi-

tions corresponding to three planes upon which no shearing

stresses act. The stresses corresponding to the axes of the ellip-

soid are called principal stresses.

Prob. 176. If Sy=Si in Fig. 175, show that the ellipsoid becomes

either a prolate spheroid or an oblate spheroid.

Art. 177. The Three Principal Stresses

In general, the resultant unit-stress R upon a given plane

makes an angle 6 with the normal to that^plane, and hence can

be resolved into a normal stress of tension or compression and

into two tangential shearing stresses (Art. 174). It is evident,

however, that planes may exist upon which only normal stresses

act, so that d is zero and R is pure tension or compression. In

order to find these planes and the stresses upon them, the angles

a, j3, y in the equations (175) are to be made equal to a, b, c,

respectively. Also replacing R by S, these equations become,

(S—Sx) cosa=Syx cosb+Six cose

(S-Sy) cosb=Sxy cosa+Szy cose

(S—Sn) cosc=Sxz cosa-f 5j,2 cos6

in which S, cosa, cosb, cose are four unknown quantities. The
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three angles, however, are connected by the relation,

cos2a+ 003^6+ cos^c= i

and hence four equations exist between four unknowns.

Remembering the relation between the shearing stresses ex-

pressed in (174), the solution of the equations leads to a cubic

equation for S, which is of the form,

S^-AS^+BS-C=o (177)

in which the values of the three coefficients are,

-D^OajO j^~r*Jj/Og~rO;2*Ja; o xy *^ yz *^ zx

y-'^^x^ y^z' ^^xy^ ye^zx '^x^ yz'~'Jy^ zx ^i^ xy

and the three roots of this cubic equation are the three normal

stresses of tension or" compression, which are called the three

principal unit-stresses and represented by Si, S2, S3.

The directions of these principal imit-stresses Si, S2, S3, with

respect to the rectangular axes OX, OY, OZ, are given by the

values of cosa, cos6, cose, which are found to be,

cosa=(w)/w)* cosb= (mz/m)^ cosc= {ms/m)^

in which mi, mz, ms, m, represent the following functions of the

given and principal unit-stresses

:

mi= {Sy-S)(S,-S)-S%, W2= (,Sz-S)(Sx-S) -S\:,

^n3={Sx—S){Sy—S)—S^xy m=mi+ m2+tn3

and it will now be shown that each principal stress is perpen-

dicular to the plane of the other two.

Let Si, S2, S3 be the three roots of the cubic equation (177).

Let ai, bi, Ci be the afigles which Si makes with the three co-

ordinate axes OX, OY, OZ, and let 02, bz, C2 be the angles which

52 makes with the same axes. The angle between the direc-

tions of Si and 52 is then given by,

C0S9f)=C0Sai 00802+ C0s6i COS62+ COSCi COSC2

Now in the first set of formulas of this article let 5 be made Si
and a, b, c be changed to Oi, bi, Ci; let the first equation be mul-
tiplied by cosa2, the second by COS62, and the third by COSC2;

and let the three equations be added; then,

5i(cosai cosa2+cos&i 00362+cosci C0SC2)
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is one term in this sum. Again, let S be made 52, an da, b, c,

be changed to 02, J2, C2; let the equations be multiplied by cosai,

cosbi, cosci, respectively, and added; then,

52(00801 cosa2+cos6i 00362+ cosci COSC2)

is one term in the sum, while all the other terms are the same

as before. Hence if Sy and ^2 are unequal, the factor in the

parenthesis, which is cos^, must vanish; is therefore a right

angle or 5i and ^2 are perpendicular. In the same manner it

may be shown that ^3 is perpendicular to both Si and 52.

The three principal stresses are hence perpendicular to each

other, and as the only diameters of the ellipsoid which have

this property are its axes, it follows that the directions of the

principal stresses Si, S2, S3 are those of the axes of the ellip-

soid of stress. These principal stresses thus give the apparent

maximum normal stresses of tension or compression; from (139)

the corresponding true unit-stresses Ti, T2, T3 are then found.

An interesting property of the three rectangular stresses Sx,

Sy, Sz, is that their sum is constant, whatever may be the posi-

tion of the coordinate axes. For, the simi of the three princi-

pal stresses Si, S2, S3 is equal to the coefficient A in the cubic

equation of (177), and hence,

52, -|- 5j,+ 52= 5i+ 52+53

,

that is, the sum of the normal unit-stresses in any three rectan-

gular directions is constant.

Prob. 177. When two principal stresses are equal, show that the

value of each is (AB—gC)/(2A^—6B), where A, B, C are the coeffi-

cients in (177).

Aet. 178. Maximum Shearing Stresses

As there are certain planes upon which the tensile and com-

pressive unit-stresses are a maximum, so there are certain other'

planes upon which the shearing unit-stresses have their maxi-

mum values. In order to determine these it is well to take the

axes of the ellipsoid as the coordinate axes, and upon the planes

normal to these there are no shearing stresses. The stresses
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Si, S2, S3 will give apparent shearing stresses on other planes,

while Ti, Tz- T3 will give the true shearing stresses.

Let I 2 3 in Fig. 178 be any plane whose normal makes the

angles a, b, c with the coordinate axes. Let R be the resultant

unit-stress upon this plane, and a, p, y be the angles which

it makes with the same axes. The angle between R and

the normal to the plane is expressed by,

cos^=cosa cosa+ cosJ cos^S+cosc cos;"

and the resultant shearing unit-

stress on the plane is,

"""^sx If R be apparent stress, this is

the apparent shearing stress; if

R be true stress, this is the trufe

shearing stress which acts along the plane.

The value of R, as a true stress, is given by,

i?2= (Ti cosa)2-l- (7^2 cos6)2-h {T^ coscf

Now, since both R cosa, and Ti cosa are components of R in

the direction OX, they are equal, and hence,

cosa;=(ri/i?) cosa cos/?=(T'2/i?) cos6 cosy={T3/R)"cosc

Substituting these in the value of cos^, the resulting true shear-

ing unit-stress is expressed by,

T"2= (Ti cosa)2-f (7^2 cosbf+(T3 coscf-{Ti cos^a+Tz cos^b+T3 cos^cf

by the discussion of which the values of a, b, c, which render T
a maximum, are deduced. Bearing in mind that the sum of

the squares of the three cosines is unity, the discussion gives,

c=go° a=b= ±4S° T=±i{Ti-T2)
a=go° b=c=±45° T=±iiT2-T3) (178)

b= go° c=a=±4S° ^=±4(7^3-^1)

and therefore tftere are six planes of maximum shearing stress,

each of which is> parallel to one of the principal stresses and

bisects the angle between the other two. On each of these planes
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the shearing unit-stress is one half the difference of the principal

unit-stresses whose directions are bisected.

The same investigation appUes equally well to the apparent

shearing unit-stresses, whose maximum values are,

S=±i{Si-S2) S=±iiS2-S3) S=±i{S3-Si) (178)'

and whose directions are the same as those of the maximum
true shearing unit-stresses. The sign ± indicates that the shears

have opposite directions on opposite sides of the plane, but iti

numerical work it is always convenient to take them as positive

or, rather, as signless quantities.

As an example, let a bar be subject to a tension of 3 000

pounds per square inch in the direction of its length and to a

compression of 6 000 pounds per square inch upon two oppo-

site sides. Here 5i =-1-3 000, ^2=— 6000, ^3=0; then the

maximum apparent shearing stresses are 4 500, 3 000, and i 500

pounds per square inch. But from (139), taking X as ^, the true

tensile and compressive stresses as Ti = -I- 5 000, T2=—7 000,

Ts^+i 000 pounds per square inch, and then from (178) the

maximiun true shearing stresses are 6 000, 4 000, and 2 000

pounds per square inch.

Prob, 178. Compute the maximum apparent and true shearing unit-

stresses for a cast-iron parallelepiped, 2X4X8 inches, which is subject

to compression of 3200 pounds upon its largest faces, 60 pounds upon

its smallest faces, and 500 pounds upon the other faces.

Art. 179. Discussion of a Crank Pin

To apply the preceding principles to a particular case, a

crank pin similar to that investigated in Art. 98 may be taken.

The axis OX is assumed parallel to the axis of the pin, OY parallel

to the crank arm, and OZ perpendicular to both, the notation

being the same as in Fig. 174. On one side of the crank pin

near its junction with the arm there were found the following

apparent stresses: A cross-shear from the pressure of the, con-

necting rod giving 5^2= 300 pounds per square inch, a shear

due to the transmitted torsion giving Sxz = 900 pounds per square
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inch, a flexural stress due to the connecting-rod giving 5^= +800

pounds per square inch, a flexural stress due to the transmitted

torsion giving ^j= + 1 600 pounds per square inch, and two

compressions due to shrinkage giving 5j,= —4000 and 5« =
— 2 000 pounds per square inch.

The two shears having the same direction add together, as

also the two tensions, and the data then are,

Sxz=i2oo 5i=+24oo 5j,= — 4000 5'z=— 2000

Inserting these in the cubic equation (177) it becomes,

5^+3 6005^—7 840 ooo5— 27 200 000 000=0

and its three roots are 4he three principal stresses. To solve

this equation, put S=x—i 200, and it reduces to,

x^— 12 160 ooo»— II 096 000 000=0

As this cubic equation has three real roots, it is to be solved by

the help ot a table of cosines ; thus let,

3^2= 12 160 000 2r^ cos3^= II 096 000 000

from which r=2 013 and cos3^ =0.6801. Then from Table 17

is fovmd 3^=47° 09', whence ^= 15° 43'. The roots are now

computed as below, and by subtracting i 200 from each the" three

principal stresses are ascertained:

a;i= 2rcos^ =+3880 5'i=+268o'

X2= ir cos(^-|- 120°)= — 2890 ^2= —4090
a;3=2r cos(0-|-24o°)=— 990 53=— 2190

and these are the apparent principal stresses in pounds per square

inch. Taking s=\ for steel, the true principal stresses are now
found by (139) to be,

ri=+4 77o r2=-4 2So r3=-i72o

which show that the maximum true tensile stress is nearly double

the apparent, while the maximum true compressive stress is

6 percent greater than the apparent.

An ordinary solution of this problem, in which no combina-

tion of stresses was made, would show the greatest tension to

be 2 400 pounds per square inch, while the complete solution as

above given shows that the greatest true tension is nearly twice

as great. The ordinary solution shows the shearing stress to
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be I 200 pounds per square inch, but by applying (178) to the

above values of T it is seen that the maximum true shearing stress

is 4 510 pounds per square inch. It thus appears that where

many stresses combine, as at the junction of a crank pin with

its web, the common methods of investigation give unit-stresses

which are far too small; it also follows that designs for such cases,

made by using the common methods, should be based upon

low unit-stresses.

Prob. 179. Apply the cubic equation (177) to the case of a bar acted

upon only by the tensile imit-stress Sx and the transverse shearing unit-

stress Sxy Deduce the principal stresses for this case.

Art. 180. The Ellipse of Stress

The ellipse of stress is that particular case where one of the

principal stresses is zero, in which event the last term of (177)

vanishes. An instance of this is where Sz=o, Syz=o, Sxz^o,

which is that of a body subject to the normal unit-stresses Sx,

Sy, and to the shearing unit-stress Sxy The cubic equation

then reduces to the simple quadratic,

52- {Sx+Sy)S+SxSy-S^xy='o

and the two roots of this are the two principal apparent stresses

whose directions correspond to the two axes of the ellipse. From

this quadratic equation, the formulas (144) were derived.

Fig. 180

Let Si and ^2 be these roots, and in Fig. 180 let OA and OB
be laid off at right angles to represent their values. Let an

ellipse be described upon the axes AA and BB, and let 4> be

the angle AON which any line ON makes with OA. Upon a
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plane normal to ON at O the normal unit-stress of tension or

compression has the value,

ON=Sicos^<j>+S2S\n^

and the tangential shearing unit-stress is,

OS={81-82) sm<p cos^

while the resultant of these gives the resultant unit-stress,

0R={8i^ cos^^+82^ sinV)*

The diagrams in Figs. 180 give graphic representations of these

values as the angle
(f>

varies from o to 360 degrees. In the first

diagram 5i and ^2 are both tension or both compression, in the

second diagram one is tension and the other compression. The

broken curve shows the locus of the point N, and the dotted

curve the locus of S. For every value of the lines OS and ON
are at right angles to each other, and OR is their resultant.

As a simple example, take the case of a bolt subject to an

axial tension of 2 000 and also to a cross-shear of 3 000 pounds

per square inch. Here 5a;=-|-2ooo, Sxy=3ocxi, and Sy=o;

the above quadratic equation then gives 5i=4-4i6o and ^2=
— 2 160 pounds per square inch for the two maximum unit-

stresses of tension and compression. The direction made by Si

with the axis of the bolt, as found by the value of cosa in Art. 175,

is about 54J degrees. From (178)' the maximum shear is 3 160

pounds per square inch. These are the apparent maximum
unit-stresses.

To find the true maximum stresses, formulas (139) give,

taking J as the factor of lateral contraction, Ti = -1-4 880, T2 =
— 3550, Tz=—6']o pounds per square inch as the principal

tensions and compressions; then from (178) the greatest shearing

stress is T'=4 220 pounds per square inch. Here the true maxi-

mum tension is 17 percent greater than the apparent, the true

compression is 64 percent greater, and the true shearing stress

is 33 percent greater. The true stresses cannot be represented

by an elUpse, but an elUpsoid of internal stress results of which

the second diagram in Fig. 180 may be regarded as a typical

section.



Aet. 181 Shearing Modulus of Elasticity 465

Cases can, however, be imagined in which one of the true

principal stresses is zero. If Si, S2, S3 are the apparent stresses

in three rectangular directions, it is seen from (139) that when

S3 — sSi — eS2 is zero, the true stress T3 is also zero. For instance,

let a cube be under coimpression by three normal stresses of 30,

24, and 18 pounds per square inch and let e=|; then Ti = i6,

T2=&, and ^3=0. Here the ellipse of true stress has its correct

application and there are no true stresses in a plane normal to

the plane of Ti and T2.

- Prob. 180. A body is subject to a tension of 4000 and to a com-

pression of 6 000 pounds per square inch, these acting at right angles

to each other. Construct the ellipse of apparent stresses and find the

positions of two planes on which there are no tensile or compressive

stresses.

Art. 181. Shearing Modulus of Elasticity

The shearing modulus of elasticity jF, defined in Art. 15,

must have a relation to the modulus E for tension or compression,

since the action of shear upon a body produces internal tensile

and compressive stresses (Art. 143). Let Fig. 181 represent the

face of a cube which is acted upon by a

vertical shear S, the edge of the cube being

unity so that the vertical shearing unit-

stress is also S. Under the action of this

shear, the face of the cube becomes dis-

torted, as shown greatly exaggerated by the

broken lines, and the longer diagonal of

the rhombus is imder a tensile unit-stress

while the shorter one is imder a compressive unit-stress, each

of these being equal to S, as proved in Art. 143. Let e be the

distortion parallel to the shear 5; then £=S/F from the defini-

tion of shearing modulus of elasticity.

The longer diagonal of the square has the length 2* and

after the distortion its length becomes [i + (i + e)2]*; by using

the approximate method for extracting roots explained in Art. 13,

and neglecting the square of e, this reduces, to 2*(i + ^e). The
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change in length of this diagonal hence is 2i . Je, and the unit-

elongation is Je. In a similar manner the length of the shorter

diagonal after the distortion is 2*(i — Je) and the unit-shortening

is ^e. Accordingly the change per unit of length for each diag-

onal is \S/F.

Now let X be the factor of lateral contraction (Art. 13) the

mean value of which is \ for cast iron and \ for wrought iron

and steel. When a body is acted upon by a tension producing

the unit-stress S, there results a unit-elongation S/E and a lateral

unit-shortening XS/E. When a body is acted upon a tension

producing the unit-stress 5 and by a compression at right angles

producing the same imit-stress S, the unit-elongation is {i-\-X)S/E,

as is shown in Art. 139; the lateral unit-shortening has also the

same value. Accordingly, for the case of Fig. 181, each diagonal

has suffered a change per unit of length equal to {x+X)S/E.

The change per unit of length for each of the diagonals of the

face of the cube has now been found by two different methods;

equating the two values, there results,

E=2{i+ X)F or F=E/2{t.+ X) (181)

which give the relation between the two moduluses. Hence when
E and X have been determined by measurements on a bar under

tension, the shearing modulus of elasticity may be computed.

Using the mean values of E given in Art. 9, and the mean values

of X as above stated, the mean values of the shearing modiilus

of elasticity are found to be as follows for iron and steel:

for cast iron, F= 6 ooo coo pounds per square inch

for wrought iron, F= 9 400 000 pounds per square inch

for steel, F= 1 1 200 000 pounds per square inch

and these have been verified by experiments on the torsion of

shafts. There is little known regarding the values of X for other

materials, and it may be said that formula (181) does not apply

to fibrous or non-homogeneous materials for the reason that E
is not the same in different directions. It is not to be expected

then that F could be correctly computed for timber from a value

of E obtained from a tension parallel to the grain.
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Four difEerent methods are available for determining the shear-

ing modulus of elasticity; first, by the measurement of the detru-

sion per unit of length in a short bar or beam like Fig. 181 ; second,

from the angle of twist of a shaft (Art. 93) ; third, from the deflec-

tions of beams of different lengths and sizes (Art. 125) ; and

fourth, by the use of formula (181). When sources of error

are eliminated from the experiments, these different methods

give results for F which agree very well for homogeneous mate-

rials. A fifth method, which is really an extension of the fourth,

will be explained in the next article. All these methods, of

course, apply only when the shearing elastic limit of the material

is not exceeded by the unit-stress.

Prob. 181. A bar of steel, 0.5050 inches in diameter and 2.0000

long, is observed to be 2.0013 inches long when under a tension of

4000 pounds, while its diameter is then found to be 0.5047 inches.

Compute the shearing modulus of elasticity.

Art. 182. The. Volumetric Modxjlus

The modulus of elasticity E for axial tension or compression

is defined to be the ratio of the longitudinal imit-stress 5 to the

unit-elongation or unit-shortening e; thus E=S/e. Similarly,

the volumetric modulus of elasticity, which will be represented

by G, is the ratio of a unit-stress 5 which acts in all directions

upon the body to the change per tmit of volume. Thus, if a

uniform unit-pressure acts upon a body of volume unity and

produces the change s' in that volume, then G=S/e'. It is

required to find the values of e' and G, and also the relation

between G and E.

Let A be the factor of lateral contraction of the homogeneous

cube, each edge of which is unity, while each face is subject to

the same pressure S. Then, from Art. 139, the unit-shortening

of each edge of the cube is s' = {S-2XS)/E; or since e represents

S/E, the imit-shortening is s' = (i-2>l)£. The volume of the

cube, which was originally unity, now becomes (i-e')^, and

hence the change in volume is 3 s' when e' is so small that its

square and cube may be neglected. The change per unit of volume

is then three times the change per imit of length of each edge of
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the cube; hence £' = 3(1— 2il)e gives the change per unit of

volume, and hence the volumetric modulus G is 5/3(1 — 2A)e,

in which e is the change per linear imit due to an axial unit-

stress /S of tension or compression only; accordingly,

G=S/e' G=S/2,{i-2X)£ Q=E/2,{i-2X) (182)

are formulas for G, of which the third gives the relation between G
and E. For example, X is about ^ for steel, and hence the volumetric

modulus for steel is equal to the modulus for tension or compression.

In the last article the relation between the shearing modulus

F and the tensile or compressive modulus E was deduced. The

last formula of (181) and the last formula of (182) furnish two

equations from which, by the elimination of X, there is found

^EG+EF=gFG as the relation between E, F, G; hence,

E=^gFG/{F+sG) F=sEG/(gG-E) G=EF/{gF-^E)

give the value of each modulus in terms of the other two. For

example, let it be known that for cast iron £=15,000000 and

F= 6 000 000 pounds per square inch ; then G= 10 000 000 pounds

per square inch. The last formula shows that F cannot be as

small as \E, for G becomes infinite when E is equal to 3^.

Water is matter which propagates stress in all directions so

that a unit-pressure 5 appHed to the surface of a column of water

produces a resisting unit-pressure S on all the confining surfaces.

According to the experiments made by Grassi in 1850, the de-

crease in a unit-volume of water caused by the pressure of one

atmosphere, or 14.7 poimds per square inch, has a mean value

of C.00005; hence the mean volumetric modulus of elasticity

for water is G= 14.7/0.00005 = 294 000 pounds per square inch,

which is about one one-hundredth of that of steel, so that water is

about 100 times more compressible than is steel within its elastic

limit. Water has no proper value of E, because it is impossible

for a column to be subjected to longitudinal pressure only; when

water in a pipe is under axial pressure, the shortening that is

measured is due to a unit-pressure acting laterally as well as

axially, and this gives the decrease in volume if the walls of the

pipe are unyielding.
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Prob. 182. Prove, for a homogeneous solid, that the ratio G/F is

equal to 2(i+ii)/3(i-2A). Also that the value of X may be expressed
by i-£/6G.

Art. 183. Stored Internal Energy

The cases of resihence, or stored internal energy, which were
discussed in Chapter XIII, relate only to simple axial stress and
to simple shear; when a body is subject to several external

forces acting in different directions, the expressions for resilience

become more complex. Fig. 183 represents a parallelopiped,

the faces of which are acted upon only

by the normal imit-stresses S\, S2, S3.

Let this parallelopiped be homogeneous

so that the modulus of elasticity E and

the factor of lateral contraction X are

the same in all directions. Let /i be the

length parallel to 5*1, and ai the section

area normal to Si; then the total stress on this section area is

aiSi, and from (lO) and (139) the change in the length of h
is li{Si—XS2—XS3)/E. The work done while the stress aiSi

is increasing from zero up to its final value is one-half the product

of the stress and change of length, provided the elastic limit

of the material is not exceeded (Art. 119) ; hence the stored in-^

temal energy due to S\ is ^aih^Si^— XS1S2— XS1S3)/E and this is

proportional to the volume aih. A similar expression may be

written for the energy due to ^2 and another for that due to 53;

and the sum of the three is,

K= ^V{Si^-i-S2^+S3^- 2XS1S2- 2IS1S3- 2kS2S3)/E (183)

in which V denotes the volume of the parallelopiped. Here the

sign of each S is positive for tension and negative for compression.

A discussion of this formula shows that K has usually a

smaller value when the signs of ^i, 52, S3 are the same than when

one has a sign opposite to that of the other two. When the unit-

stresses are equal in sign and magnitude, then K=^(i — 2X)V. S^/E
;

for steel A is J and the resilience becomes K=i{S^/E)V, which

-

is the same as for simple axial stress (Art. 120). As a numerical
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example, let the three edges of the parallelepiped oi, 02, 03 be

8, 6, and 4 inches long and the material be cast iron for which

X is ^, and let the unit-stresses 5i, 52, S3 be 3 000, 4 000, 5 000

pounds per square inch compression; then K=i'jo inch-poimds

= 14 foot-pounds is the stored internal energy.

When the above parallelepiped is subject to the action of

six pairs of shears of which the imit-stresses are 5i2, 523, S31,

in the notation of Art. 174, the corresponding unit-detrusions

are ^S'^iz/F, ^S^2a/F, i^Shi/F, where F is the shearing modulus

of elasticity, and the sum of these multiplied by the volume of

the body gives,

K'=^V{S^i2+S^2z+Sh{)/F (183)'

as the stored energy due to the shears. This is to be added to the

value of K in (183) when normal stresses also act upon the faces

of the parallelepiped. A comparison of the two formulas shows

that, if a body is acted upon by normal and tangential forces of

equal intensity in three rectangular directions, the stored in-

ternal energy due to shearing may often be greater than that

due to the normal stresses.

The principle of least work, established in Art. 126, states

that the internal stresses which prevail in a body under the action

of external forces are those which render the stored internal energy

a minimum. This principle may be used in cormection with

(183) to determine the stresses Si, S2, Sz in cases where the

conditions of static equilibrium are insufficient in number. For

example, it was assumed in Art. 163 that the tangential and radial

stresses in a spherical annulus were connected by the relation

25-t-i?=a constant. This assumption may seem an arbitrary

one, but it can be shown by an algebraic investigation, which

is too lengthy to be given here, that the total stored internal

energy is less when 2S+R is constant throughout the spherical

anuulus than when this sum varies according to any function

of the distance x from the center.

The ether of space transmits Hght, electricity, and gravitation

from one body to another. The phenomena of gravitation are

famiUar to every one, but the explanation of its cause has not yet
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been discovered. All observations and theory indicate that the

ether is an elastic substance which obeys the laws of the mathe-

matical theory of elasticity. Accordingly it seems that the

general conclusions of Art. 163 regarding the distribution of

stresses in hollow spheres should apply to those stresses in the

ether which cause the mutual gravitation of bodies of matter;

if this be so, these stresses vary inversely as the cube of the dis-

tance. The actual forces of gravitation, however, vary inversely

as the square of the distance, and it is not easy to see how this

law is deduced from that of the distribution of the stresses. To
solve the great riddle of gravitation, a more definite knowledge

is required regarding the constitution of matter, and the indi-

cations are that an explanation may be obtained during the

twentieth century.

Prob. 183. Consult Isenkrahe's Das Rathsel von der Schwerkraft

(Braunschweig, 1879) for critical reviews of the various attempts to

explain the phenomena of gravitation.
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Art. 184. Velocity of Stress

When an external force is suddenly applied to a body, the

stresses produced are not instantaneously generated, but are

propagated by a wave-like motion through the mass. Hence

there is a velocity of transmission of stress which will be shown

to depend upon the stiffness and density of the material. In

fact, a sudden stress is propagated through a body in the same

manner as sound is propagated- through air or water. Let v

be this velocity, w the weight of the material per cubic unit at

a place where the acceleration of gravity is g, and E the modulus

of elasticity of the material. It is required to find v in terms

of w, g, and E.

If i^ is a force which acting continuously for one second upon

a body of the weight W produces the velocity u, and if the same

body when falHng vertically acquires under the action of gravity

the velocity g in one second, then the constant forces are pro-

portional to the accelerations that they produce; hence,

F/W=u/g or Fg=Wu
which is one of the well-known laws of mechanics.

Now let a unit-stress 5 be applied to the end of a bar of section-

area unity, producing the unit-elongation e upon the first element

of its length. The elongation of the first element transmits the

stress to the second element, and this in turn produces an elonga-

tion of the second element, and so on. At the end of one second

of time the length v is stressed, and the total elongation in that

length will be ev. Thus in one second the center of gravity

of the bar is moved the distance ^ev, and its velocity u at the

end of the second is ev. Now referring to the formula Fg=Wu,
the' value of i^ is 5 which is equal to sE, the value of W is wv,

and hence,

bE . g = wv . sv or v= {Eg/w)i
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which is the formula for the velocity of wave propagation in

elastic materials first deduced by Newton.

Taking for g the mean value 32.16 feet per second per second,

for w the values in Table 1, for E the values in Table 2, and
reducing E to pounds per square foot, since g and w are in terms

of feet, the mean values of the velocity of transmission of stress

in different materials are found to be,

for Timber, v= 13 200 feet per second

for Stone, v= 13 200 feet per second

for Cast Iron,
, T7= 12 400 feet per second

for Wrought Iron, ^'= 15 500 feet per second

for Steel, v= 17 200 feet per second

For water confined in a pipe, the value of E is the same as the

volumetric modulus G (Art. 182), and taking w as 62^ pounds
per cubic foot, the velocity v is about 4 670 feet per second, which
agrees well with experiments on the velocity of sound in water.

In the mathematical theory of elasticity, the velocity of trans-

mission of stress must be taken into account in order to obtain

complete solutions of the problems of impact and suddenly

applied forces. The above formula also gives the velocity of

sound, Ught, and all wave propagations in elastic media. The
ratio w/g is a constant for the same material at any point

in space, and it expresses the density, while E is an index of

the stiffness. At the surface of the earth the quantity E/w
for steel is about 8 820 000, but for the ether it must be about

30 100 000 000 000 000 in order to account for the fact that the

velocity of light is 984 000 000 feet per second. The stiffness of

the ether is hence very great compared to its density; if its density

be one one-thousandth of that of hydrogen, its stiffness is 37
times as great as that of steel. The opinion has long prevailed

that the force of gravitation is instantaneously propagated through

the ether, but the indications now are that its velocity is the

same as that of light and electricity.

Prob. 184. Verify the statements in the last paragraph. Consult

Van Nostrand's Science Series, No. 85, and ascertain the values deduced

by Wood for the density and stiffness of the ether of space.
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Art. 185. Elastic-Electeic Analogies

In Art. 193 of Treatise on Hydraulics there are pointed out

some of the analogies between hydraulic and electric phenomena.

The theory of elasticity furnishes other analogies which are

interesting and one of these is perhaps more perfect, from a

formal point of view, than any that is furnished by hydraulics.

Let a bar of length I and section area a be under the axial tension

P, let E be the modulus of elasticity of the material and e the

change of length due to the tension; then from Art. 10, this elon-

gation is e={l/aE)P. Let the reciprocal of £-be called E', then

e=E'{l/a)P. This equation is the same as that given by Ohm's

law for the loss in voltage when a current flows through a wire,

if e represents the lost voltage and P the current; the quantity

E'{l/a) is called electric resistance and it varies directly as the

length of the wire, inversely as its section area, and directly as

the specific electric resistance E'. The formal analogy is per-

fect, but the fundamental ideas are quite different in the two

cases. In the bar e is the loss in length which varies directly

as I, inversely as a, and directly as the reciprocal of E, but the

phenomenon is a static one entirely, for no energy, is lost or

transmitted through the bar.

Referring now to Fig. 110a, let h, h, h be the lengths of the

three columns under the compression P, and ai, ag, Oz their

section areas, while £i, £3, £3 are their moduluses of elasticity.

Let the quantities h/aiEi, ^2/a2-E2, h/osEs be called resistances

and be designated by the letters ri, rz, H. JChen by formula (UO)

the total change of length of the compoimd column is given by

e=(ri +r2 + r^P. This may be called an arrangement 'in

series,' and as in electric flow, the total resistance is the siun

of the separate resistances.

Fig. 110J represents a column which may be said to be an
arrangement ' in parallel,' and here the three lengths are equal

to /, while the section areas are ai, ^2, 03. Formula (llO)" gives

the change of length for this cas^ as e=P/(i/ri + 1/^2+ 1/^3),

which agrees with the electric law governing the loss of voltage
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in a branched circuit, the total resistance being the reciprocal of

the sum of the reciprocals of the separate resistances. The
loads Pi, P2. -P3 on the three parts of the column correspond

to the currents in the three parts of the divided wire, while the

change of length e corresponds to the drop in voltage which is

the same for each of the three parts. The load P divides between

the three parts inversely as their resistances to change of length,

while the electric current divides between three branches in-

versely as their electric resistances.

With respect to work the analogy is less perfect. Resuming

the equation e=Q/aE)P for the change in length of a bar under

axial stress, the product of P and e is work, while this product

is work per unit of time if e represents voltage and P represents

current. This is because P represents force for the bar, while

for the electric wire it represents electric charge per unit of time.

For the bar the external work is spent in storing internal energy

in the bar; for the wire the work Pe is lost in heat. The above

analogy is hence merely a formal one and the fundamental ideas

are quite different in the two cases.

The phenomena of torsion afford another analogy and here

energy may be transmitted through a rotating shaft, but no

energy is lost if the material is not stressed beyond the shearing

elastic limit. Here the angle of twist for a round shaft varies

directly as the length of the shaft and also directly as the trans-

mitted power, but it varies inversely as the square of the section

area. Some theories of electricity and magnetism appear to

indicate that forces of shearing and torsion in the ether may in

large part account for the observed phenomena. Reiff's Elas-

ticitat und Elektricitat (Leipzig, 1893) contains a theory of

electricity developed from the fimdamental equations of the

mathematical theory of elasticity.

Art. 186. Miscellaneous Problems

Below are given a number of topics which have not been

treated in the preceding pages, as their discussion properly be-

longs to special works on special branches of applied mechanics.
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Teachers who wish to give prize problems to their classes may

perhaps find some of these useful for that purpose.

Prob. 186a. Discuss a screw with square threads at the end of a

bolt, and find its length in order that its shearing strength may be

equal to the tensile strength of the bolt.

Prob. 186&. Let a helical spring consist of round wire, let r be the

radius of the coil, d the diameter of the wire, and P. the tensile and

compressive load upon the spring. Show that the shearing unit-stress

in the wire is itPr/Tzd?.

Prob. 186c. The data being the same as in the last problem show

that the elongation or shortening of the spring under the load P is

d^nPr^lFd'^, where n is the number of coils and F is the shearing

modulus of elasticity.

Prob. 186(i. A load P is supported by three strings of equal size

hung in the same vertical plane from the ceiling of a room. The mid-

dle string is vertical and each of the others makes an angle 6 with it.

If P\ is the stress on the middle string and P2 the stress on each of the

others, show that,

Pl= P/(i -H 2 C0S3^) P2=P C0S2(?/(I+ 2 COsSf?)

To solve this problem the condition must be introduced that the inter-

nal work of all the stresses is a minimum.

Prob. 186e. A load P is supported by three strings of equal size

lying in the same plane. The middle string is vertical, one string

makes with it the angle d on one side, and the second string makes

with it the angle ^ on the other side. Find the stresses in the strings.

Prob. 186/. A circular ring of mean diameter d is pulled in the

direction of a diameter by two tensile forces each equal to P. Show

that the maximum bending moment is at the section where P is ap-

plied, and that its value is \Pd?ln{d?-\-d,r'^'), where r is the radius of

gyration of the cross-section of the ring.

Prob. 186^. An elliptical chain link has the mean length 4^1 and

the mean width 2\dy, where di is the diameter of the round section

area. When an open chain link of these proportions is subject to the

tension P in the direction of its length, the greatest bending moment

occurs where the tension is applied, and the greatest unit-stress is

9>.iP/d-^. For a chain link with a cross stud, the greatest unit-stress

is ^.gP/d^^ These results are correct only when the elastic limit of

the material is not exceeded.
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Art. 187. Answers to Problems

The following are the answers to some of the problems given

in the preceding pages, the number of the problem being in

parenthesis. The instructions in Art. 8 should be carefxilly

followed by the student, and in no event should he refer to an

answer until the solution of the problem is completed. How-

ever satisfactory it may be for a student to be able to know that

his solutions give the correct results, it is well for him to keep

in mind that in actual engineering work the solutions of problems

will never be given.

(16) 4.16 inches. (2b) 3.33 inches. (3a) 55 400 pounds per square

inch. (56) i 780 feet. (7a) 2.71 and 3.33 inches. (86) 3.57 centi-

meters. (9a) 26300000 pounds per square, inch. (146) 122 foot-

pounds. (15) i' 09". (17) 26.2 square inches. (18a) 183.5 ^^o-

grams. (21) $1058.84. (23) 3 140 pounds. (25a) 4.04 cents. (26a)

105000 pounds. (29a) ^1/^2=3/2. (30a) 0.88 inches. (31a) 2 500

pounds per square inch. (32) 28 000 pounds per square inch. (346)

3^^ inches; 72 percent. (35a) 2J inches. (39) ^=242, F=i40
pounds. (41) 985 pounds per square inch. {42b) c=^(2b+b')/(b+b').

(45a) 8^ miles. (496) 6000 pounds. (50a) 5; 2.5. (506) 6 feet 5

inches. (51) 5 610 and '3 170 pounds per square inch. (52a) 0.018

inches. (54a) 14 500 000 pounds per square inch. (556) 74 500 kilo-

grams per square centimeter. (56a) 8 to 3; 64 to 9. (586) 0.72 inches.

(596) i?i= 290 pounds. (606)^=0.366; k=o.577. (61a) //w= 2.828.

(62a) id/{i+ 2K) and {2— k)1/{t,— 2k). (636) 0.027 inches. (66c)

o°2s'47". (71a) --^^wl. (73) i?i=-ii3pqunds. (74a) 0.0131 w/s/^L

(75a) »=o.6o95. (766) 71= 268.3, /2=44i-S inches*. '(77a) r=

i(di^+d2^)i. (79a) 5.05 inches. (81a) 3^. (82a) 23000 pounds.

(S3) i3i and 16J inches. (89a) 30 pounds. (896) 105 degrees. (906)

691 pounds per square inch. (916) 1.2 horse-powers. (92a) S.r.

(926) 144 to 100. (936) 9 380 000 pounds per square inch. (966) 21^

inches. (996) 100 to 79. (101a) 4^ inches. (1016) Nearly 8 inches.

(105) 5„=9 42o pounds per square inch and 0=54° 13'- (107a) 4.9.

(108) 5s = 205 pounds per square inch, (119a) 122 foot-pounds.

(120a) 5j horse-power. (1216) 0.52 horse-powers. (123) 2,PP/2s6EI.

(126) iP. (130) 120 feet per second. (148) 2 886 000 pounds. (149)

5= -|- 14 000 pounds per square inch. (150) 18 000 pounds per square



478 Appendix and Tables

inch. (151) 54 ooo pounds per square inch. (l5Za) Deduce an ex-

pression for i?i in terms of the given radii and S^; then find the value

of r2 which renders Ri a maximum. (156) 6 rollers. (157) 64 and 7.

(IGOa) r-{r^—i(P)i. (163a) 1.6 inches. (165) About 1.4 inches. (175)-

56° 19' with axis of bolt. (177) See theory of equations in algebra.

(180) 54° 44' with the greater apparent stress.

Evolvi varia problemata. In scientiis enim ediscendis prosunt ex-

empla magis quam praecepta. Qua de causa in his fusius expatiatus

sum.—Newton.

Nous avons pour but, non de donner un traite complet, mais de

montrer, par des examples simples et varies, I'utilite et I'importance de

la theorie matliematique de I'elasticit^.

—

Lame.

Homo, naturae minister et interpres, tantum facit et intelligit quan-

tum de naturae ordine re vel mente observaverlt, nee amplius scit aut

potest.

—

Bacon.

Art. 188. Expl.-vnation of Tables

Tables 1-5 give average physical constants for materials

and Tables 6-13 give properties of beams and columns. At the

foot of each table is a reference to the articles where its use is

explained.

Table 14 gives vpeights per linear foot of wrought-iron bars

both square and round, the side of the square or the diameter

of the circle ranging from it to lof inches. Approximate, weights

of bars of other materials may be derived from this table by the

following rules

:

for Timber, divide by 12

for Brick, divide by 4

for Stone, divide by 3

for Cast Iron, subtract 6 percent

for Steel, add 2 percent

For example, a cast-iron bar 6| inches square and 8 feet long

weighs 8(157.6— 0.06X157.6) = 1 185 pounds. In hke manner

a steel bar 2A inches in diameter and 4 feet 9 inches in length

weighs 41(12.534-0.02X12.53) = 60.7 pounds.
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Table 15 gives four-place squares of numbers from i.oo to

9.99, the arrangement being the same as that of a logarithmic

table. By properly moving the decimal points, four-place squares

of other numbers may also be taken out. For example, the

square of 0.874 is 0.7639, that of 87.4 is 7 639, and that of 874

is 763 900, all correct to four significant figures.

Table 16 gives four-place areas of circles for diameters rang-

ing from 1.00 to 9.99, arranged in the same manner. By properly

moving- the decimal point, four-place areas for all circles may

be found. For instance, if the diameter is 4.175 inches, the

area is 13.69 square inches; if the diameter is 0.535 inches, the

area is 0.2248 square inches; if the diameter is 12.2 feet, the

area is 116.9 square feet, all correct to four significant figures.

Table 17 gives four-place trigonometric functions of angles,

and Table 18 the logarithms of these functions. The term

'arc' means the length of a circular arc of radius unity, or the

value of the angle in radians, while 'coarc' is the complement

of the arc. If 9 is the number of degrees in an angle, the value

of the arc is nd/1^0, and this subtracted from ^n gives the coarc.

Table 19 gives four-place logarithms of numbers and these

are sufficiently precise for nearly all computations arising in

the apphcation of the principles of mechanics of materials. The

differences in the last column dnable interpolations to be made

so that four-place logarithms of numbers with four significant

figures may be taken out; for example, the logarithm of 0.6534

is 1.8152.

Table 20, taken from the author's Elements of Precise Sur-

veying and Geodesy, gives mathematical constants" and their

logarithms to nine decimals ; this is a greater number of decimals

than will ever be needed in computations on the materials of

engineering, but they will sometimes be required for the dis-

cussion of geodetic and physical measurements.
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Table 1. Average Weight and Expansibility

Material



Tables 481

Table 3. Average Tensile and Compressive Strength

Material
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Table 5. Working Unit-Stresses for Buildings
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Table 6. Steel I-Beam Sections
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Table 7. Steel Bulb-Beam Sections

Depth

Inches
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Table 9. Steel Channel Sections
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Table 10. Steel Angle Sections
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Table 11. Steel Z Sections

Size
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Table 13. German I Beams
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Table 14. Weight of Wrought-Iron Bars

Side or
Diam-
eter

Inches
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Table 16. Areas of Circles

d



Tables 493
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Table 17. Trigonometric Functions

Angle



Tables 495

Table 18. Logarithms of
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Table 19. Logarithms of Numbers

»



Tables 497
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Table 20. Constants and their Logarithms

Name.
(Radius of circle or sphere = i.)
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INDEX

Absorption of brick, 64

Acid steel, 61

AUoys, 6s, 67

Aluminum, 66

Angles, 104, no, 111, 486

Angular velocity, 421

Annealing, 59, 64, 305

Anthracite coal, 67, 380

Answers to problems, 477
Apparent and true stresses, 186, 274,

359-382, 462

Approximate computations, 34

Area, reduction, of, 31

Areas of circles, 21, 492

Artificial stone, 54, 66

Army, gun formulas, 394-402

Association, testing, 441

Axial stresses, i, 3, 190, 253, 327, 365

impact, 327, 331, 337
Axis, neutral, 98, 100

of a bar, 2, 188

of a beam, 100, 290

of a column, 190

Axle steel, 63

Axles, 348, 353

Bach, C, 414, 416

Bar, I, 42, 69

Bar iron, 58, 489

Bars of uniform strength, 71

resilience of, 306

under centrifugal«tress, 421

under impact, 327, 331

weights of, 2, 478

Base-line apparatus, 165

Basic steel, 61

Bauschinger, J., 353

Beams, 87-187, 253-267, 269-302

bending moments, 93, 116

cantilevers, 1 16-148, 487

Beams, cast iron, 122, 128

center of gravity of sections, 103

centrifugal stress, 425

combined stresses, 251-275

concrete, 282-298

constrained, 149-167, 487

continuous, 87, 168-187

deck, no, 484

definitions, 87

deflection, 112, 135, 145, 153, 258,

312-319

deflection and stiffness, 142, 158

deflection and stress, 143, 159

designing of, 125, 292

elastic curve, 87, 114, 136, 138

elastic resilience, 308

experimental laws, 99, 185

fixed, 149-167, 487

flexural strength, 56, 131

flitched, 282

fundamental formulas, loi, 102, 185

Galileo's investigations, 186

historical notes, 184

horizontal shear, 269

impact on, 329, 334
internal stresses, 97, 270

internal work, 303-323

lines of stress, 272

maximum moments, 119, 150, 154

modulus of rupture, 47, 131

moments of inertia, 105-108

moving loads, 132

plate-girder, 108, 247, 298

pure flexure, 374
overhanging, 149-165

reactions, 88, 150, 169

reinforced-concrete, 285, 298

resilience of, 308

rolled, 108

safe loads for, 124
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Beams, simple, 1 16-148, 487.

stiffness, 141, 158

sudden loads, 324

theoretical laws, 97, 185

true stresses, 367

imiform strength, 143-148

unsymmetiic loads, 427

vertical shear, 90, 116

weights of, 42, 88

Bearing compression, 85

Bending moment, 93, 98, loi, 116

diagrams of, 98, 116

maximum, 119, 150, 487

maximum maximonun, 133

tables of, 175, 487

triangular load, 426

Bessemer steel, 60, 305

Best iron, 57
Bethlehem Steel Co., 64, 241, 383
Beton, 66

Bimie's formulas, 394
Boiler steel, 63

Boilers, 83, 417

joints in, 81-86

tubes in, 78

Bolts, 16, 239, 265, 366

Brass, 67

Bresse, M., 182

Brick, 6, 24, 44, 48, 252, 380

strength of, 13, 14, 17, 49, 131, 480

weight of, 42, 48

Brick masonry, 49
Brick tower, 50

Bridges, 40, 59, 86, 187, 262, 284

Bridge iron,- 58

rollers, 404

Briquettes, S3

Brittle materials, 44, 380, 438

Brittleness, 6, 43
Bronze, 67

Buildings, unit-stresses, 18, 482

Building stone, 51

Bulb beams, no, 427, 482

Butt-joints, 82, 85

Campbell, H. H., 61

Cantilever beams, 87, 1 16-148, 487

deflection of, 135, 145

Cantilever, elastic curve, 136

fundamental formulas, loj

internal work, 308

resilience, 303

table for, 487

uniform strength, 144

with constraint, 163

Carbon in cast iron, 55
steel, 60, 62

virrought iron, 58

Castings, 55, 65, 482

Cast iron, ss, 480-482

beams, 128

brittleness of, 44, 380

elastic limit, 5, 56, 480

factors of safety, 17

flexural strength, 56, 131

in compression, 13, 56

in shear, 14, 38

in tension, 10, 24, 56

pipes, 76

resilience of, 306

weight of, 42, 55

Cements, 52, 438

Center of gravity, 73, 103

of gyration, 112

Centrifugal stress, 421, 425

Chain link, 476

Channels, 1:04, no, 485

Chestnut, 46, 47
Christie's experiments, 197

Circles, areas of, 106, 492

Circular plates, 409, 411

rings, 476

Classification of pig iron, 55
steel, 63

Clapeyron, E., 174, 182

Clavarino's formulas, 393
Coal, 67, 380

Coefficient of elasticity, 24

of expansion, 252, 480

of impact, 350

of inertia, 331

of internal friction, 378, 380

Cold bend test, 58, 63, 439, 446
rolling, 58

Columns, 12, 188-224, 279

compound, 276-281
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Columns, deflection of, 194

design of, 206, 219

eccentric loads, 214, 217

ends of, 191, 221

Euler's formula, 192

experiments on, 196

Gordon's formula, 203, 208

Hodgkinson's formula, 197

investigation of, 203, 219, 279

Johnson's (T. H.) formula, 208

modified Euler formula, 431

radius of gyration, i9r

Rankine's formula, 200, 211

reinforced-concrete, 279

Ritter's formula, 2 it, 221

rupture of, 197, 213

safe loads for, 205

sections of, 188, 281

theory of, 190, 220

Combined stresses, 251-275

compression and flexure, 254

flexure and torsion, 259

shear and tension, 264

tension and compression, 251

tension and flexure, 259

torsion and compression, 268

Comparison of beams, 141, 158, 487

Compound beams, 282-302

columns, 276-281

cylinder, 390

Compression, 2, 11, 3r, 188, 438, 481

and flexure, 255, 262

and shear, 265

and tension, 251

and torsion, 266

cast iron, 14, 17, 55

cement, 53, 438

concrete, 54, 288

eccentric loads, 72, 214

mortar, 52

on rivets, 81, 366

steel, 14, 17, 60

stone, 14, 51

wrought iron, 14, 17, 44, S7

Computations, 19, 34

Concentrated loads, 88, 119, 407

Concentric loa,ds, 190, 368

Concrete, 54, 279. 288, 482

Concrete beams, 282-302

columns, 279

Connecting rod, 426

Constants, tables of, 480-498

Constrained beams, 149

Continuity, 168

Continuous beams, 87, 168-187

equal spans, 175

fixed ends, 179

properties of, 171

tables of, 175, 176

three moments, 173

unequal spans, 177

Contraction of area, 31

Cooper, T., 85, 2ro, 404

Cox, H., 342

Couplings for shafts, 239

Crandall, C. L., 407

Crank arm, 242, 244

pin, 241, 243, 461

Crehore, J. D., 212

Crucible steel, 60

Cubic equation, 166, 462

Curvature, radius of, 114

Crystals in steel, 354, 382

CyUnders, 77, 383

compound, 390, 399
exterior pressure, 77

interior pressure, 75, 383

thick, 76, 383-395

thin, 75, 77, 394
with hoops, 78, 383, 399

Cylindrical rollers, 403

Dead loads, 132, 349

Deck beams, no, 484

Deflection of beams, 112, 312-319, 487

cantilever beams, 135, 145

compound beams, 300

constrained beams, 151-156

simple beams, 138, 147, 301

sudden loads, 324

under impact, 329, 334

under moving load,~ 350

under shearing, 302, 317

Deflection of colimins, 194, 218

of plate girders, 301

Deformation, elastic, 3, 8, 23, 28
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Deformation, ultimate, 30

work in, 35
Designing, 18

beams, 125, 292

columns, 206

guns, 384, 389, 399
joints, 83

shafts, 231, 24r

Detrusion, 38, 91

Diagram of stress, 9, 28

Diagrams, shear and moment, 92, 94,

116, 150, 173

Dimensions in equations, 21

Ductility, 11, 58, 63

Dudley, C. B., 448

Dudley, P. H., 343

Dynamic stress, 324-358

Eccentric loads, 72-74, 214, 217

Economic beams, 129

Economy in design, 18, 127

Efficiency of a joint, 82

Elastic curve, 87, 112, 151, 153, 156

cantilever beams, 135

columns, 193, 218

constrained beams, 141-149

continuous beams, 173

general equation, 112

simple beams, 139

Elastic deflection, 112

Elastic deformation, 23

Elastic limit, 4, 9, 17, 23, 27, 480

cast iron, 5, 56

compression, 13

shear, 15, 39

steel, s, 27, 63,

tension, 5, 443

timber, 5, 47
wrought iron, J, 58

Elastic resilience, 303-317

Elastic strength, 1-32

Elasticity, coefficient of, 24

laws of, 4, 8, 45

modulus of, 23

theory of, 449-471

Electric analogies, 278, 474

Ellipse of stress, 463

Ellipsoid of stress, 456

Elliptical plates, 414

Elongation, 3, 4, 10, 26

ultimate, 10, 30, 56, 58, 63, 443

under impact, 325, 332

under own weight, 70

Endurance tests, 358

Equations, dimensions, 21

Equilibriiun, 2, 96

Ether, 470, 473

Euler's formula, 192, 196, 431

Expansibility, 251, 480

Experimental laws, 8, 17, 99, 225, 360

External forces, i, 39, 77

External work, 35, 303, 312, 324

Eye bars, 260, 445

Fairbaim, W., 78

Factor of lateral contraction, 34, 359
of safety, 7, 8, 17

Fatigue of materials, 352-358, 381

Fixed beams, 87, 149, 152, 156

Flexural strength, 47, 56, 131, 481

Flexure, 87-186

and compression, 255, 262

and tension, 259, 262

and torsion, 266

centrifugal, 425

erroneous views, 185

formula, 10

1

of crank pin, 241

of joints, 82, 86

pure, 374

under impact, 329, 334

under live load, 132, 349
work of, 308, 312

Floor beams, 147, 300

Flues, boiler, 78

Fly wheel, 423

Forge pig, 55, 57
Forgings, 64

Foundry pig, 55

Friction, internal, 375-382

Galileo, G., 186

German I beams, 109, 488

Glass, 67

Gordon, L., 203, 208

Goss, W. F. M., 444
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Granite, 50, 51

Gravitation, 470, 473
Gravity, center of, 73, 103

specific, 42

Grecian columns, 223

Greek letters, 21

Grindstone, 424

Gun metal, 63

Guns, 34, 383-401

hooped, 384, 390, 399
solid, 388, 393

Gyration, radius of, 112, 129

Hard steel, 62

Hartmann, L., 376

Hatt, W. K., 347, 348, 441

Hemispheres, 417, 419

Hemlock, 46

Historical notes, 39, 186, 196, 318, 341,

433. 441

Hodgkinson, E., 342, 347

Hollow cylinders, 75, 383-401

shafts, 232

spheres, 77

Hooke's law, 4, 40, 449

Hoops, centrifugal stress, 422

for guns, 383, 391, 396, 399

shrinkage of, 79, 396

Horizontal impact, 330, 336

shear, 269

stresses, 97, 100

Horse-power, 230

Howard, J., 358, 436

Hydraulic cement, 52

Qiortar, 53

I beams, 103, 107, 122, 124,- 128, 178,

483, 488

Inertia of a bar, 331

of a beam, 334

in impact, 331-337

moment of, 105

Inspection of material, 44S

Impact, 324-351

on bars, 327, 331

on beams, 329, 334

pressure due to, 344

tests on, 341, 346, 439

Inflection point, 149

friction, 375-382

Internal stresses, 2, 96

work, 303-315

International Association, 441

Investigation, 17, 122, 203

of beams, 121

of columns, 203

of guns, 389, 393, 401

of joints, 80

of shafts, 230, 233

Iron, 44, 55, 58

Isotropic materials, 449

Jacket for guns, 384

Johnson, J. B., 368, 409

Johnson, T. H., 208

Joints, riveted, 80-86

Keep, W. J., 342

Keep's impact machine, 343

Kirkaldy, D., 341

Lam6, E., 395, 478

Lame's formulas, 385

Lap joints, 80, 84

Lateral contraction, 32, 34, 359

factor of, 34
Launhardt's formula, 355-

Laws, experimental, 8, 17, 99

of fatigue, 353

of internal stresses, 360

of resilience, 303, 324

Lead, 67

Least work, 320

Length, change in, 25

Limestone, 50, 51, 482

Limiting length of bar, 69

of beam, 167

Live loads, 132, 349

Loads, 3, 87, 407

safe, for beams, 124

safe, for columns, 205

sudden, 324

Locomotive, 425

Log, beam cut out, 129

Logarithms, 495-498

Long columns, 192
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Machinery tee!, 63

Malleable cast iron, 57

Manhole covers, 415

Marburg, E., 212, 441

Marston, A., 407

Martens, A., 435
Masonry, brick, 49

stone, SI

Materials, factors of safety, 7-17

fatigue of, 352-358

properties of, 42-68

resilience of, 303-320

specifications for, 444
strength of, 1-22, 42-68

tests of, 433-443

weights of, 42

Maximum momen'.s, 119, 133, 487

shears, 119, 134, 459
Measures, systems of, 20, 21

Medium steel, 62, 63, 445

Meigs, J. F., 401

Merriman, M., 182, 212, 356 .

Metric system, 20

Millstone, 424

Modulus of elasticity, 23, 37, 47, 480

resilience, 307

rupture, 47. 132

Moisture in timber, 47
Moment of a force, 93

bending, 94

twisting, 226

Moment of inertia, 105, in
for beams, 105, 108, 429, 487

for columns, 189

for shafts, 229

Moments, bending, 93, in, 116

cantilever beams, 94, 117

continuous beams, 176

diagrams of, 116

fixed beams, 152, 156

maximum, 119, 133

overhanging beams, 150

resisting, 98

simple beams, 95, 118

theorem of three, 173

Moncrieff, J. M., 224

Mortar, 52

Moraig loads, 132, 349

Natural cement, 52, 54
Navier, L. M. H., 186

Navy, gun formulas, 393, 40a

Neutral axis, 100

surface, 99
Newton, I., 8, 40, 382, 478
Nickel steel, 65

Normal stress, 264, 362, 452

Norton, W. A., 318

Oak, 46, 47, 482

One-hoss shay, 18

Open-hearth steel, 60, 61, 444
Ordnance formulas, 383—401

Ores of iron, 57, 60

Oscillations of a bar, 325, 333
of a beam, 344

Overhanging beams, 149-155^ 165

Own weight of bar, 69

of beam, 124

Parabola, 94, 118, ,144, 357
Parallel rod, 425

Paving brick, 49
Phosphor bronze, 66

Phosphorus in steel, 61, 444
Pitch of rivets, 81, 85

Piers, 71

Pig iron, 55

Piles, 279, 281

Pine, 46, 47, 318

Pipes, 76, 383

thick, 383-392

thin, 75, 390

Piston rod, 19, 188

Plasticity, 43
Plate girder, 108, 147, 298, 369
Plates, 58, 63, 403-416, 447

on cylinders, 83, 419
Poisson's ratio, 34
Polar moments, 229

Portland cement, 52, 54
Powder for guns, 383

Power, shafts for, 230

Pressure due to impact, 345
Principal stresses, 457
Prisms, loads on, 2, 74, 214

Problems, answers to, 477
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Puddling furnace, 58

Pure stresses, 373
Purlins, 428

Radius of curvature, 114

of gyration, 112, 129, 191

Rafters, 254

Railroad rails, 43, 104, 343
Range of stresses, 352-358

Reactions of beams, 88, 91

Rectangle, 105

Rectangular beams, 129, 288

plates, 415

shafts, 247

Reduction of area, 31

Reinforced concrete, 279-298

Rejto, A., 378

Repeated stresses, 352-358

Resilience, 303-318, 469

of bars, 304, 306

of beams, 308

of shearing, 310

of torsion, 311

Resisting moment, 98, 227>

shear, 98, loi

Resultant stress, 454
Ritter, A., 211, 221

Riveted joints, 80-86

design of, 83

efficiency of, 82

Rivet iron, 58

steel, 63, 445

Rivets, 80-85, 482

Rolled beams, 109

shapes, no
Rollers, 403, 406

Rop-s, 66, 278

Round shafts, 229, 231

Rupture, 3, 8, 15, 31

of beams, 130

of columns, 197

in repeated stress, 352

modulus of, 132

Safe loads, 17, 124

Safety, factors of, 7, 17

Saint Venant, B. de, 249, 450

Sand-lime brick, 66

Sandstone, 50-51, 380

Section, changes in, 32

Section area, 1, 42

factor, 102

Set, 5, 28, 29

Shafts, 225-250, 266, 268

couplings for, 239

cranks for, 241, 243 .

for power, 230

hollow, 232

rourfd; 227, 231

square, 248

resilience of, 310

stiffness of, 231

strength of, 231, 237

true stresses, 371

Shapes, rolled, 107, no, 483-488

Shear, 14, 15, 369, 459
and tension, 15, 263, 362

deflection due to, 316

horizontal, 269

on rivets, 81

resilience of, 310

resisting, 98

vertical, 90, 98

ultimate strength, 14, 370
work of, 39, 310

Shear formula, loi

Shearing modulus, 37, 234, 465

strength, 481

Shears for cantilevers, 91, 117

for continuous beams, 176

for simple beams, 92, 118, 120

Shocks, 17, 57

Shrinkage of hoops, 79, 393
Shortening, 3

Simple beams, 87, 89, 116-148, 487

Slate, 51, 482

Slenderness ratio, igi

Soft steel, 62, 445

Solid shafts, 229, 231, 237

Sound, velocity of, 473

Specific gravities, 42

Specifications, 18, 444
Spheres, 77, 417

Spherica.1 rollers, 406

Spring steel, 63
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Springs, 341, 476

Square plates, 416

shafts, 248, 440

Squares of numbers, 479, 490

Stability, 18, 127

Static loads and stresses, 324

Steam boilers, 76, 78

pipes, 75

Steel, s, 10, 13, 17, 24, 60-65, 132. 252;

354, 444

constants of, 480-482

factors of safety, 17

properties of, 60-65

resilience, 307

weight of, 42

Steel beams, 103, 107, 124, 483, 488

cranks, 241, 243

guns, 384

plates, 410, 413, 447
pipes, 76

rollers, 404

ropes, 278

spheres, 407, 419

Stiffness of beams, 141, 158, 487

of shafts, 237

Stone, 13, 14, i7> 42, 44, 5°. 131. 482

Straight-line formula, 208

Strength of materials, 1-22, 42-68

history of, 39, 186

tables, 480, 481

Stress, i, 42, 100, 139, 449
apparent, 275

centrifugal, 421, 424

combined, 251-275

diagrams of, 9, 28, 29

in guns, 383-402

pure, 373
repeated, 356

sudden, 324

temperature, 68, 251

true, 359-362

working, 17

Stringer, 284

Strong steel, 5, 11, 13

Structural steel, 5, 10, 11, 13, 14, 17,

63, 109, 128, 444

Sudden deflections, 325

loads, 324

Supports of beams, 87, 89, 159

Surface, neutral, 98

T shapes, 104, 107, in, 12S, 484

Tables, 20, 478, 480-498

Talbot, A. N., 296, 375, 436

Tangential stress, 452

Temperature, ^67, 251

Tempering, 62, 64

Tension, 2, 9, 36, 69, 407, 481

and flexure, 259, 262

and shear, 263

and torsion, 268

centrifugal, 164

eccentric, 73, 262

Testing laboratories, 41, 358, 436
Testing machines, 40, 433, 442

Testing, rules for, 442

Test specimens, 15, 436, 446

Tests, brick, 49
cast iron, 56

cement, 53, 438

cold benfi, 58, 239
columns, 196, 213

• compression, 12, 45, 438

fatigue, 352

flexural, 47, 56, 131, 439, 443
impact, 341, 346, 439, 443
steel, 63, 437
stone, 51

tension, 4, 9, 36, 436, 442

timber, 47, 187, 438
torsion, 226, 245, 439
wrought iron, 58

Tetmajer, L. von, 208, 224

Theorem of three moments, 173-183

Thick hollow cylinders, 383, 389, 393
spheres, 417

Thin pipes, 76

Thurston, R. H., 67, 318, 435
Timber, 5, 10, 13, 14, 24, 38, 46, 482

beams, 129

factors of safety, 17, 47
flexural strength, 131

resilience, 306

weight, 42, 46
Time of vibration, 337
Tool steel, 65
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Torsion, 225-250, 439
combined, 152, 154

formula for, 228

non-circular sections, 245

phenomena of, 225

resilience of, 310

rupture by, 235

Transmission of power, 230

Transverse impact, 327, 334
Trap rock, 50, 51

Tredgold, T., 40, 347

Triangular beams, 104, 106, 166

True deformations, 360, 370

stresses, 274, 359-384

Tubes, 78, 382

Turner, C. A. P., 354
Twisting moment, 227

Trigonometric functions, 494

Ultimate strength, 6, 10, 13, 481

compression, 12, 44

deformation, 30

shear, 14

tension, 4, 36

Uniform load, 88, 119, 150

Uniform strength, 71, 144

bars, 71

beams, 143, 146

Unit-deformation, 9, 23, 30

Unit-stress, 1, 12, 23

repeated, 353

working, 17

Unsymmetric beams, 125, 427
loads, 428

Velocity of live load, 350

stress, 472

Vertical shear, 90, 116, 119

deflection due to, 316

stresses caused by, 93, 123

work of, 39, 310

Vibrations after impact, 338

of a beam, 344

Volume, change of, 33, 450

resilience of, 469

Volumetric modulus, 467

Water, 468, 473
Water pipes, 75, 77

pressure, 76

Wave propagation, 473
Webster, W. R., 448

Weights of bars, 42, 88, 478, 489

materials, 42-68, 480

Weyrauch's formula, 356

Wheel, revolving, 422

Wire, 63, 66

Wohler's laws, 353
Wood, De v., 78, 166, 473
Work, least, 320

Work of flexure, 304, 308, 312

rupture, 36

shearing, 39
tension, 35, 307

torsion, 310

vertical bar, 70

vertical shear, 317

Working unit-stresses, 17, 482

Wrought iron, 5, 10, 13, 14, 17, 24, 57.

60, 252, 482

factors of safety, 17

flexural strength, 132

resilience, 307

shear, 38

tension, 10, 29, 59
weight of, 42, 489

Wrought-iron bars, 42, 58, 489

pipes, 76

plates, 58

Yield point, 27, 29, 63, 443, 447

Young, T., 40, 346, 433

Young's modulus, 24

Z bars, 104, 427, 430, 487

Zimmerman, H., 351
















